
JANUARY/FEBRUARY 2016

ORACLE.COM/JAVAMAGAZINE

JAX-RS 2.0:
THE LITTLE-USED
FEATURES

31
LONG-LIVED
SERVER
CONNECTIONS

41

OMNIFACES:
COMPREHENSIVE
JSF UTILITY

23

SPRING BOOT:
FAST, EASY WEB
APPLICATIONS

15

BEHIND THE UI

WRITING
WEB APPS

JAVA 9 MODULARITY 59 | GOSU LANGUAGE 65 | KUMULUZEE 80

http://www.oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

01

//table of contents /

COVER ART BY I-HUA CHEN

03
From the Editor
The Rise and Fall of Languages in 2015

06
Letters to the Editor
Comments, questions, suggestions,
and kudos

08
Events
Upcoming Java conferences and events

11
Java Books
Reviews of two Java tutorials

59
Path to Java 9
An Early Look at Java 9 Modules
By Ben Evans
Preparing for modularity—the biggest
change by far in the next release of Java

65
JVM Languages
Gosu: A Modern, Down-to-Earth
Language for the JVM
By Scott McKinney
A low-ceremony language used in
enterprise apps offers an extraordinarily
flexible, yet static, type system.

72
Containers
Using Multiple Docker Containers
By Arun Gupta
Assemble a cluster of Docker containers
and run a Java EE app—without a lot of
housekeeping.

80
Microservices
KumuluzEE: Building
Microservices with Java EE
By Tilen Faganel and Matjaz B. Juric
Develop self-contained microservices
with standard Java EE APIs using the
open source KumuluzEE framework.

89
Fix This
By Simon Roberts
Our latest code challenges

40
Java Proposals of Interest
JEP 254: Compact Strings

71
User Groups
Manchester Java Community

93
Contact Us
Have a comment? Suggestion? Want to
submit an article proposal? Here’s how.

By Josh Long

The new Spring
framework brings
long-awaited ease
of development
to web apps.

FIRST STEPS WITH
SPRING BOOT

15 23
OMNIFACES:
MAKING JSF
A LOT EASIER
By Anghel Leonard

Solve many day-to-day
JSF problems with
a single, integrated
utility library.

31
JAX-RS 2.0:
USING ALL THE
GOODNESS
By Abhishek Gupta

Understanding the
client API, filters,
interceptors, and other
useful REST features

41
LONG
POLLING WITH
ASYNCHRONOUS
SERVLETS
By Henry Naftulin

The reliable workhorse
of client/server
communications is
the easy-to-use
fallback when other
methods don’t work.

47
PUSHING
DATA IN BOTH
DIRECTIONS
WITH
WEBSOCKETS
By Danny Coward

Build on WebSockets’
long-lasting connec-
tions to create a simple
chat app

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////  JANUARY/FEBRUARY 2016

02

EDITORIAL
Editor in Chief
Andrew Binstock
Managing Editor
Claire Breen
Copy Editors
Karen Perkins, Jim Donahue
Section Development
Michelle Kovac
Technical Reviewers
Stephen Chin, Reza Rahman

DESIGN
Senior Creative Director
Francisco G Delgadillo
Design Director
Richard Merchán
Senior Designer
Arianna Pucherelli
Designer
Jaime Ferrand
Senior Production Manager
Sheila Brennan
Production Designer
Kathy Cygnarowicz

PUBLISHING
Publisher
Jennifer Hamilton  +1.650.506.3794
Associate Publisher and Audience
Development Director
Karin Kinnear  +1.650.506.1985
Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES
Tom Cometa  tom.cometa@oracle.com
Advertising Sales Assistant
Cindy Elhaj  +1.626.396.9400 x 201
Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (US/Canada)
Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@halldata.com  Phone +1.847.763.9635

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2016, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions
expressed by authors, editors, and interviewees—even if they are Oracle employees—do not reflect the views of Oracle. The
information is intended to outline our general product direction. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly at no cost to qualified subscribers by
Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

ATMs, Smartcards, POS Terminals, Blu-ray Players,

Set Top Boxes, Multifunction Printers, PCs, Servers,

Routers, Switches, Parking Meters, Smart Meters,

Lottery Systems, Airplane Systems, IoT Gateways,

Programmable Logic Controllers, Optical Sensors,

Wireless M2M Modules, Access Control Systems,

Medical Devices, Building Controls, Automobiles…

#1 Development Platform

7 Billion
Devices Run Java

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:cindy%40sprocketmedia.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle-sub.halldata.com/site/ORA000263JFnew/init.do?&PK=NAFORJ
mailto:java%40halldata.com?subject=
mailto:java%40halldata.com?subject=
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

03

//from the editor /

For the last few years, in my first editorial of
the new year, I’ve looked at how programming

languages fared during the previous calendar year.
Despite the general perception that changes in
language popularity are slow-moving affairs, pro-
gramming languages often suffer sudden declines
(Objective-C) or enjoy unexpected surges (Java, as
I’ll explain in a moment). The most widely used
measure of popularity is the TIOBE Index, which
counts searches for languages and normalizes
the results to a percentage of the total number of
searches. Whether web searches are an accurate
proxy for popularity is a point of some conten-
tion; however, the TIOBE Index has one significant
advantage: it provides data for the index going
back 15 years. This makes it possible to identify
multiyear trends easily.

Good analysis of language popularity neces-
sarily relies on additional sources. I also rely on

PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

The Rise and Fall of Languages in 2015
An unusually good year for Java and JVM languages

data extracted from GitHub, the popular host
for open source and private projects; Open Hub,
which surveys all active open source projects; and
Google Trends. Each measure quantifies different
things, and it’s important to look at the data in
context before determining what useful informa-
tion it provides.

By most measures, Java had a banner year.
TIOBE just named Java Language of the Year for
2015 because it enjoyed the greatest jump of any
language in terms of percentage of searches.
TIOBE attributes this surge to the use of Java on
Android. I believe this is true, but it’s only part of
the story. The rapid adoption of Java 8 certainly
contributed, too. Java’s surge definitively lays to
rest the trend of click-bait articles inquiring “Is
Java Dead?” in which pundits invariably concluded
after lots of explanation that it’s not dead.

GitHub is a good way to measure popularity

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.drdobbs.com/jvm/the-rise-and-fall-of-languages-in-2012/240145800
http://www.drdobbs.com/jvm/the-rise-and-fall-of-languages-in-2013/240165192
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://githut.info/
https://goo.gl/VDhWVg
http://www.google.com/trends/explore
http://www.eweek.com/developer/developers-embrace-java-8-features-while-looking-forward-to-java-9-2.html
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

04

//from the editor /
among younger programmers.
Here, too, Java is hot. It cur-
rently sits behind only JavaScript
in popularity. This represents a
remarkable ascent. GitHub ini-
tially rose to popularity in the
Ruby community. In 2008, Java
was the seventh most popular
language on GitHub; Ruby was
first. Java’s ascent of five posi-
tions in the intervening years
is unmatched. During the same
period, no programming lan-
guage has managed to rise more
than two slots. I expect its popu-
larity to continue due to Java’s
ubiquity on the cloud (every
major cloud provider supports
it) and its central role in the
Internet of Things.

Among third-party JVM lan-
guages, the only two entrants
to make it into the TIOBE top
50 or to be ranked by Open Hub
are Groovy (#17) and Scala (#30).
On TIOBE, Groovy had a banner
year. It’s hard to know the cause
of this, although progress in the
chief complaint against it—
performance—has surely helped.
In open source projects, Scala
has the upper hand in popular-
ity. This suggests that Groovy is
more popular in business con-
texts, which is a transition that
Scala must make in the next few

years in order to move out of the
margins. I’m curious to see if it
will cross this chasm. Several
years ago, the biggest complaints
about Scala were the binary
incompatibility of new releases,
slow compile times, and lan-
guage complexity. Today, the last
two concerns remain important
obstacles. Meanwhile, languages
such as Kotlin, which is viewed
by many as a direct competitor,
are putting pressure on Scala. So
is Java indirectly. Scala’s claim to
fame is that it enables developers
to mix object-oriented (OO) and
functional paradigms. But Java 8
introduced functional program-
ming elements, which, while
far more modest than Scala’s,
might induce businesses think-
ing of looking to Scala for its
functional-OO hybrid qualities to
stay put.

Developers who prefer the func-
tional paradigm will be pleased
to know that TIOBE expects that
Clojure, with its Lisp-like syn-
tax and currently sitting in third
place among JVM languages, will
soon advance to the honor roll
of top 50 languages. Meanwhile,
other functional languages, such
as Haskell and Erlang, both broke
into the top 40 spots.

In non-JVM languages, perhaps

the most interesting trend, which
appears in multiple indexes,
is that JavaScript’s popularity
appears to have peaked. A few
years ago, its ubiquity on front
ends (both web and mobile) and
the advent of Node.js suggested
that it might become the new
universal programming language
(see Atwood’s Law). But limita-
tions of the language make it
difficult to use on large-scale
projects. The result has been
the growth of JavaScript trans-
piling alternatives such as Dart,
CoffeeScript, and TypeScript. Of
these, I personally most admire
TypeScript, which also appears
to be gaining the most traction
among developers. I’ll be curi-
ous to see whether the approval
of the ECMAScript 6 standard
(also known as ECMAScript 2015)
in June of last year will improve
JavaScript’s popularity. We’ll
check in next year.

Language features and projec-
tions of future language adoption
are among the most enjoyable
discussions in programming. Let
me know if you have different
views from mine.

Andrew Binstock, Editor in Chief
javamag_us@oracle.com

@platypusguy

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/blog/2047-language-trends-on-github
https://github.com/blog/2047-language-trends-on-github
https://goo.gl/jJjkXj
https://goo.gl/jJjkXj
http://goo.gl/mTj4Wa
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://oracle.com/java

Excelsior JET 11 supports Java SE 8 and JavaFX 8 on all desktop platforms.

 AOT Compilation
Has Come to Java 8

Try It Now
Registration-Free, 90-Days Trial Download

http://www.excelsiorjet.com/java8aot?utm_source=javamagazine&utm_medium=fullpage&utm_campaign=java8aot&utm_content=nightlanding-2

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

06

//letters to the editor /
More JavaFX and Introductory
Articles
Java Magazine used to run arti-
cles for developers new to Java
in every issue. In addition, there
were occasional articles on
JavaFX. Is it possible to continue
publishing such articles?

—Marius Claassen

Editor Andrew Binstock responds:
Thanks for your note. Readers’ sug-
gestions about what to cover more
frequently are very helpful to us.
We will be resuming the beginner
series in the next issue, and it should
become a regular feature. Michael
Kölling—the author of the previous
series on introductory topics—will be
the author. His focus will be on lan-
guage features, especially the dark
corners where unexpected or unusual
behaviors are found.

You might have seen in the
September/October issue that we
covered TestFX, a way of testing
JavaFX apps. And we do have a cou-
ple of additional JavaFX articles in
the pipeline. If we see an increase in
demand for JavaFX articles, we will
cover the topic even more.

How Effective Is Static
Analysis?
Thank you for your editorial on
the value of static analysis (“The

Unreasonable Effectiveness of
Static Analysis,” September/
October 2015 issue, page 3). You
were kind enough to quote some
of the statistics I published ear-
lier. Let me make some comments
and add some more information.

Static analysis is among the
most effective forms of defect
removal, and also fairly inexpen-
sive and fairly rapid. It can be used
for both development and also for
removing latent bugs in legacy
applications. As you pointed out,
false positives are much lower
today than they were 10 years
ago. I think static analysis should
become a standard software qual-
ity method that is used on just
about 100 percent of all software
applications, with one caveat—the
tool is simply not available for
many languages except the 30 or
so most popular ones.

However, its effectiveness is
undeniable. Table 1 shows the
approximate defect removal effi-
ciency (DRE) values for a sample
of pretest removal and for test
stages. The DRE metric was devel-
oped by IBM circa 1973 as a tool
for validating the effectiveness of
inspections. It is a simple metric.
If developers find 90 bugs and a
customer reports 10 bugs in the
first three months of use, then

the DRE would be 90 percent.
The current US average for

DRE is about 92 percent, but top
projects can get up to 99.5 per-
cent. This average value is based
on both pretest removal and
the six normal test stages used

SEPTEMBER/OCTOBER 2015

T E C HNIQ UE DEF E C T
REM OVA L
R AT E

FORMAL INSPECTIONS 87%

STATIC ANALYSIS 55%

E XTERNAL BETA TEST > 1,000
CLIENTS

52%

SYSTEM TEST—CERTIFIED TESTERS 46%

INFORMAL PEER REVIEWS 45%

SYSTEM TEST—UNCERTIFIED
DEVELOPERS

36%

FUNCTION TEST 35%

COMPONENT TEST 32%

UNIT TEST 30%

E XTERNAL BETA TEST < 1,000
CLIENTS

28%

DESK CHECK 27%

PAIR PROGRAMMING 22%

ACCEPTANCE TEST 17%

REGRESSION TEST 14%

PERFORMANCE TEST 12%

Table 1. Defect removal efficiency (in
descending order) for pretest and test
techniques

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oraclejavamagazine-digital.com/javamagazine/may_june_2015?pg=1#pg1

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

07

//letters to the editor /

for most software (unit test, function
test, regression test, performance test,
system test, and acceptance test). Of
course, some critical software—such as
medical devices and weapons systems—
might use more than 12 test stages and,
therefore, exceed 99 percent in DRE.

DRE is only half of the IBM quality
metric set. The other half was “defect
potential” or the sum of the bugs found
in many sources. Today, defect poten-
tial is measured using function point
metrics because “lines of code” isn’t a
useful measure for requirements and
design bugs. The current US average is
about 4.5 bugs per function point, which
represents the total of all bugs found
in requirements, architecture, design,
code, user documents, and “bad fixes”
or new bugs in bug repairs.

Once again, thank you for a good
article. I hope this additional informa-
tion will be helpful.

—Capers Jones
VP and CTO, Namcook Analytics LLC

Contact Us
We welcome comments, suggestions,
grumbles, kudos, article proposals, and
chocolate chip cookies. All but the last
two might be edited for publication.
If your note is private, please indicate
this in your message. Please write to us
at javamag_us@oracle.com. For other
ways to reach us, see the last page of
this issue.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////  JANUARY/FEBRUARY 2016

08

//events /

PHOTOGRAPH BY RACHEL TITIRIGIA/FLICKR

JavaLand MARCH 8–10
BRÜHL, GERMANY
This annual conference is a gathering of
Java enthusiasts, developers, architects,
strategists, and project administrators.
Session topics for 2016 include contain-
ers and microservices, core Java and JVM
languages, enterprise Java and the cloud,
front end and mobile, IDEs and tools, and
the Internet of Things (IoT). After lectures
on the first day of the conference, attend-
ees get exclusive use of Phantasialand and
its rides and attractions.

Voxxed Days Berlin
JANUARY 27–29
BERLIN, GERMANY
Sharing the Devoxx philoso-
phy that content comes first,
Voxxed Days events see both
internationally renowned and
local speakers converge. Berlin
topics include Java compo-
nent design with Spring 4.3;
microservices with Java, Spring
Boot, and Spring Cloud;
and simple REST APIs with
Dropwizard and Swagger.

Topconf Linz
FEBRUARY 1–3
LINZ, AUSTRIA
This conference focuses on
new ways to manage mobile,
Java, cloud, front end, security,
and more. Workshops include
sketching web and app inter-
faces, microservices and event
sourcing with Spring Boot, and
software management in a
lean and agile world.

Jfokus
FEBRUARY 8–10
STOCKHOLM, SWEDEN
Jfokus has run for eight years
and is the largest annual
Java developer conference
in Sweden. Conference topics
include Java SE and Java EE,
the inner mechanics of the
JVM, front end and web,
mobile, continuous delivery
and DevOps, the IoT, cloud and
big data, future and trends,
alternative JVM languages,
and agile development.

DevNexus 2016
FEBRUARY 15–17
ATLANTA, GEORGIA
DevNexus is a conference
drawing 1,700 developers, with
6 workshops, 12 tracks, and 120

presentations. Featured tracks
include HTML5 and JavaScript,
Java SE/Java EE/Spring, and
data and integration.

Apache Hadoop Innovation
Summit
FEBRUARY 18–19
SAN DIEGO, CALIFORNIA
With presentations from more
than 25 hands-on industry
speakers, topics covered will
include MapReduce and Spark,
building privacy-protected
data systems, scalable data
curation, best practices, and
architectural considerations for
Hadoop applications.

Mobile World Congress
FEBRUARY 22–25
BARCELONA, SPAIN
This industry-leading event
focuses on in-depth analysis of
present and future trends in the
mobile industry. The 2016 MWC
conference program features
tracks on the IoT, smart cities,
digital finance, and more.

Embedded World 2016
FEBRUARY 23–25
NUREMBERG, GERMANY
The 14th annual gathering of
embedded system developers

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.javaland.eu/de/home/
http://voxxeddaysberlin2016.sched.org/
http://topconf.com/linz-2016/
http://www.jfokus.se/jfokus/
http://www.devnexus.com
https://theinnovationenterprise.com/summits/apache-hadoop-innovation-summit-san-diego-2016
http://www.mobileworldcongress.com
https://www.embedded-world.de/en/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////  JANUARY/FEBRUARY 2016

09

//events /

will explore the latest develop-
ments, define trends, and once
again present the key areas of
focus for future developments.
This is where hardware, soft-
ware, and system development
engineers come together to turn
the next milestones of the IoT
into reality.

ConFoo
FEBRUARY 24–26
MONTREAL, QUEBEC, CANADA
ConFoo is a multitechnology con-
ference for web developers, fea-
turing about 150 presentations
by popular international speak-
ers. Past sessions have included

Testing Java EE Applications Using
Arquillian, by Reza Rahman, and
Hybrid Mobile Development with
Apache Cordova and Java EE 7, by
Ryan Cuprak.

Riga Dev Day
MARCH 2–4
RIGA, LATVIA
This event is a joint project by
Google Developer Group Riga, Java
User Group Latvia, and Oracle User
Group Latvia. By and for software
developers, Riga Dev Day focuses
on 25 of the most-relevant topics
and technologies for that audi-
ence. Tracks include JVM and web
development, databases, DevOps,
and case studies.

QCon London
MARCH 7–9
LONDON, ENGLAND
QCon is designed for techni-
cal team leads, architects,
engineering directors, and
project managers who influ-
ence innovation in their teams.
Topics include what to expect in
Java 9 and Spring 5, containers
in production, microservices for
mega-architectures, full-stack
JavaScript, and data science and
machine learning methods.

EclipseCon 2016
MARCH 7–10
RESTON, VIRGINIA
EclipseCon is all about com-
munity. Contributors, adopters,
extenders, service providers,
consumers, and business and
research organizations gather to
share their expertise and learn
from each other. Topics this year
include an introduction to the
Eclipse Che next-generation
Java IDE, hawkBit and soft-
ware updates for the IoT, a faster
index for Java, and Java 9 support
in Eclipse.

jDays
MARCH 8–9
GOTHENBURG, SWEDEN
jDays is a Java developer con-
ference covering Java/Java EE,
architecture, security, DevOps,
cloud and microservices, testing,
JavaScript, IoT trends, methodolo-
gies, and tools.

CITCON
LATE MARCH (DATE TO BE ANNOUNCED)
PERTH, AUSTRALIA
CITCON, the Continuous Integra-
tion and Testing Conference, is
a worldwide series of free “Open
Spaces” events for developer-
testers, tester-developers, and
anyone else with an interest in
continuous integration and the
type of testing that goes along
with it.

Have an upcoming confer-
ence you’d like to add to our
listing? Send us a link and a
description of your event at
least four months in advance at
javamag_us@oracle.com. We’ll
include as many as space permits.

PHOTOGRAPH BY BOBISTRAVELING/FLICKR

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://confoo.ca
http://rigadevday.lv
http://qconlondon.com
https://www.eclipsecon.org/na2016/
http://www.jdays.se
http://citconf.com/
mailto:javamag_us%40oracle.com?subject=

Written by leading Java experts, Oracle Press books offer the most defi nitive,
complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and as eBooks

Your Destination for Java Expertise

Raspberry Pi with Java:
Programming the

Internet of Things (IoT)
Stephen Chin, James Weaver

Use Raspberry Pi with Java to create
innovative devices that power the

internet of things.

Introducing JavaFX 8
Programming
Herbert Schildt

Learn how to develop dynamic JavaFX
GUI applications quickly and easily.

Java: The Complete Reference,
Ninth Edition
Herbert Schildt

Fully updated for Java SE 8, this
definitive guide explains how to

develop, compile, debug, and run
Java programs.

OCA Java SE 8 Programmer I
Study Guide (Exam 1Z0-808)
Edward Finegan, Robert Liguori

Get complete coverage of all
objectives for Exam 1Z0-808.

Electronic practice exam questions
are included.

http://www.OraclePressBooks.com

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////  JANUARY/FEBRUARY 2016

11

A common question asked by
developers new to Java is which
book is the best introduction to
the language. The answer really
depends on what exactly they’re
looking for. If it’s a detailed
explanation of the language
that explains every aspect and
idiom and can serve as a refer-
ence later on, then the book to
get is Core Java, which I review
next. If, however, they would
rather not work through hun-
dreds of pages but would prefer
a hands-on experience in which
they write small programs that
quickly teach the language in
a series of graduated projects,
then the latest entry in the
Murach’s Beginning Java series,
which I examine in the second
part of this review, is the book
I recommend.

Core Java announces its his-
torical success by noting that
this volume is the 10th edition.
Not many books are popular
enough to warrant the publisher

releasing 10 editions. But Core
Java provides such a deep expla-
nation of the language that most
readers will want the book to be
always close at hand. This tome,
at an impressive 1,040 pages, is
only Volume I of a two-volume
set. (Volume II will be published
shortly. If the division of cover-
age is similar to earlier editions,
it will weigh in at about 1,000
pages as well.) Between the
two books, there is no aspect
of the language or its principal
libraries that is not explained
in detail.

Volume I presents everything
a mainstream programmer will
need to know about Java 8: the
basics of the language (includ-
ing generics, lambdas, and
other advanced features), col-
lections, concurrency, and, curi-
ously, graphics programming
with Swing. In addition, there
is a lengthy section on building
and deploying Java programs.
(Volume II is scheduled to cover

Java 8 streams, XML and JSON
processing, JNI, JNDI, network-
ing, databases and JDBC, and so
on.) Essentially, Volume I is the
pure language and Volume II is
key libraries as well as lesser-
used language features.

What makes Core Java the
definitive work on the language
is more than its vast scope—it
is the quality of the presenta-
tion. Explanations are supremely
clear, code examples are meticu-
lous and highly approachable,
and the pacing and sequenc-
ing are spot on. In addition, if
a topic requires background to
make the Java examples easier
to understand, the author, the
well-regarded Cay Horstmann,
has no difficulty spending sev-
eral pages on the conceptual
issues before starting in on Java-
specific details. This patience
and his preference for com-
plete information is particularly
noticeable in the chapters that
deal with Java objects. There

//java books /
CORE JAVA VOLUME I—FUNDAMENTALS, 10TH EDITION
By Cay S. Horstmann
Prentice-Hall

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.informit.com/store/core-java-volume-i-fundamentals-9780134177328

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////  JANUARY/FEBRUARY 2016

12

//java books /
Horstmann first explains how Java
implements object orientation, the
choices and trade-offs it makes,
and how those affect the way
the language is written and used
today. In these explanations (and
many others), Horstmann relies
on his long experience with the
language. Using his background,
he frequently explains how cer-
tain features are based in Java’s
early history and how the needs of
the time informed the reasoning
for various design choices. This
kind of full, detailed information
makes it much easier to under-
stand subtle aspects of the lan-
guage and use them as intended.
(Note that if this much detail is
more information than you’re
looking for in a language tutorial,
Horstmann has an abridged ver-
sion, Core Java for the Impatient,
which weighs in at just over 500
pages. I reviewed this book in the
May/June 2015 issue.)

I am a big fan of detailed lan-
guage tutorials that can serve as
definitive references once I’ve
mastered the basics. No other book
on Java better fits this mandate
than Core Java. This has been true
for at least the last 10 years, pos-
sibly longer. If you feel that the
advent of Java 8 suggests it’s time
to update your language tutorial

and reference, then this is the book
to get, without any doubt at all.

MURACH’S BEGINNING JAVA
WITH NETBEANS
By Joel Murach and Michael Urban
Mike Murach & Associates

All Murach books, including this
title, use a unique approach to
instruction. They deliver a radi-
cal implementation of the notion
that the best way to learn a new
technology is to use it. So, rather
than offering extensive tutorials
that give you the full background
information (as in the previously
reviewed title), Murach books pro-
vide you only the material needed
to master coding the immediate
next step. These steps are typi-
cally presented in two-page
chunks: the left page explaining
the topic, the right page present-
ing the implementation in code,

with accompanying notes about
the code itself. Turn the page, and
you start a new two-page chunk.
Needless to say, these short les-
sons build on each other so that
after a chapter of them, you’ve
done a fair amount of coding and
have a working familiarity with
the chapter’s theme.

This is an entirely hands-on,
pragmatic approach that works
as follows, when explaining, for
example, how to use arrays in
Java. The topic comprises these
two-page lessons: how to create
an array, how to assign values to
an array, how to use loops with
arrays, how to use enhanced for
loops with arrays, how to work
with two-dimensional arrays, how
to use the Array class, how to
copy and compare arrays. Eighteen
pages and you’re good to go.

The benefit of this approach is
obvious, and it makes the Murach
books very attractive for teach-
ers as well as for students who just
want to get up and running quickly.
The books also work as reference
volumes. As can be seen from the
previous list of topics, they can
double as collections of useful,
albeit elementary, recipes. (Notice
the consistent use of “How to do x”
as the template for each lesson.)

This hands-on design also

means that it’s considerably easier
to jump around and pick up the
bits of knowledge you might need
for solving a specific problem—
without needing to learn the entire
language. This approach works
particularly well in Murach’s
books on HTML5 and CSS. It also
works with languages, but not
quite as well, because language
features rarely can be studied in
complete isolation.

While this volume is an intro-
duction to the language, I feel
that intermediate topics are given
exposure that is too short. For
example, in this volume, lambdas
get only eight pages of coverage,
which is plainly insufficient. To its
credit, though, the book correctly
identifies drawbacks of lambdas,
which are rarely mentioned in
other treatments: lambdas are dif-
ficult to debug, difficult to under-
stand in a stack trace, and for
those unfamiliar with them, dif-
ficult to understand in code.

This is not an introduction to
programming with NetBeans;
rather, it’s a tutorial on Java that
incidentally uses NetBeans. For
teachers of Java boot camps or
quick language intensives and for
developers who need to get up and
running quickly, this tutorial is
the one to use. —Andrew Binstock

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.informit.com/store/core-java-for-the-impatient-9780321996329
https://www.murach.com/shop/murachs-beginning-java-with-netbeans-detail

https://zeroturnaround.com/software/xrebel/trial/tshirt/?utm_source=javamag&utm_medium=fullpage_january&utm_campaign=xrebeltshirtpromo

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

14ART BY I-HUA CHEN

Building Modern
Web Apps

This issue of Java Magazine focuses on development
of web apps. Had this issue appeared, say, two years
ago, the content would have been completely differ-
ent. In those days, the topic would have mandated

extensive coverage of those innumerable Gordian knots of
interconnected services, Java frameworks. But today, in this
issue, we cover only one framework, Spring Boot (page 15).
This is partly due to the fact that Spring has essentially won
the framework wars (at least from the perspective of popu-
larity and adoption), and to the fact that the nature of web
apps has changed substantially. REST services have replaced
in many ways the services delivered formerly by frameworks.
As REST continues its ascendance, the role of the JAX-RS 2.0
spec (page 31) has become more important than ever.

Not all connections to remote servers, however, are suited
to REST’s simple commands. Some connections need to be
long-lasting, and for this problem, there are at least two
important solutions: the WebSocket protocol (page 47) as
found in Java EE and the more widely supported long-polling
approach (page 41), both of which are remarkably straight-
forward to use. If the greater use of simple services is the
emerging pattern in web apps, it’s also the emerging pat-
tern at the metalevel. Large applications of all kinds—web or
not—are being decomposed into smaller services, which are
then orchestrated to deliver the intended functionality. This
microservices orientation is being driven via the agility con-
ferred by smaller containers such as Docker (page 72). And—
ironically enough—new frameworks, such as KumuluzEE
(page 80), are gaining traction to aid in this simplification.

Finally, for those of us working with tried-and-true
JavaServer Faces (JSF), this issue includes a detailed overview
and tutorial of OmniFaces (page 23), the wide-ranging JSF util-
ity library that deservedly won the 2015 Duke’s Choice Award.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

15

//web apps /

Spring Boot is an opinionated way to quickly build web
applications intended for production. It pulls together

and integrates lots of technologies including Spring and
Java EE. And it makes them accessible through a simple UI
that enables you to mix and match components and quickly
assemble the pieces, to which you then add your application’s
specific knowledge. This approach has gained popularity
because it greatly reduces the amount of boilerplate code and
housekeeping tasks. In this article, I show the steps involved
in setting up a simple application that includes a modestly
complex UI and a persistence layer.
In addition, it contains tests—in the
way that modern software develop-
ment practices dictate.

Getting Started
There are many ways to get started
with Spring Boot. My favorite is
Spring Initializr, which is a web
service you can use directly or from
wizards inside your favorite IDEs
(NetBeans; IntelliJ IDEA 14 Ultimate;
or the Spring Tool Suite, which is an
Eclipse distribution). Whatever your
approach, in Spring Initializr you’ll
be shown a menu of checkboxes.
Choose the type of workloads and
technologies you’d like to work with.

First Steps with Spring Boot
The new Spring framework brings long-awaited ease of development to web apps.

JOSH LONG You can select what type of packaging you’d like: JAR file or
WAR file. And you can choose a language: Java or Groovy. You
can also specify which version of the JVM you’d like to use:
1.6 through 1.8. Whenever possible, choose 1.8 because the
other two versions have already reached official end of life.

This article looks briefly at lots of different technologies.
The goal is to highlight just how easy it is to pull them
together into a useful application. For our example, choose
these technologies from the wizards: Web, JPA (the Java
Persistence API), REST repositories, Vaadin (the UI library),

Figure 1. Selecting project options

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://spring.io/projects/spring-boot
http://start.spring.io
https://spring.io/tools

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

16

//web apps /

Actuator (Spring Boot’s web services component), Remote
Shell, H2 (the database), and Thymeleaf (a templating engine).
See Figure 1. Then click Generate Project to download a zip
file that you can open in your favorite IDE.

When you open the project, you’ll see that there’s a sim-
ple public static void main method and an empty
unit test. You’ll also find two empty directories: static
and templates in the src/main/resources directory.
Templates that are processed on the server side—such as
FreeMarker, Velocity, and Thymeleaf—live in the templates
directory. Assets that will be sent to the client directly—such
as JavaScript, images, CSS, and so forth—live in the static
directory. In Figure 2, I’ve shown the directory complete with
a sample Thymeleaf template (reservations.html) and a
simple hi.html file to be sent to an HTTP client unprocessed.

Open the Maven build file, pom.xml. You’ll see that it con-
tains dependencies that correspond to checkboxes selected in
Spring Initializr. The various starter-* dependencies are
opinionated dependencies: they don’t contain code; instead
they just bring in other dependencies. For example, org
.springframework.boot:spring-boot-starter-data-
jpa brings in everything you’re likely to need to get started
with JPA: the latest and greatest JPA 2 specification types, the
latest Hibernate implementation, Spring’s support JPA, ORM,
JDBC, and so on.

You don’t have to worry about managing version ranges
or lining up dependencies across common libraries. Maven
has the ability to import or inherit build configuration
from other build artifacts. Spring leverages this feature and
exposes a useful parent build that defines version ranges and
other needed items such as dependencies like the Servlet
API, Hibernate, and so forth. There are two benefits to this
approach: you can omit version declarations for the depen-
dencies that are predefined for you, and you can update to
the latest version of Spring Boot when a new version rolls
around by simply overriding the version of the parent build

that you’re using. All the associated dependencies will be
upgraded in lockstep automatically.

The Data Speaks for Itself
Let’s create a simple JPA entity, Reservation.java, that we
can manipulate in our application.

package com.example;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;

Figure 2. The populated project directory

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

17

//web apps /

@Entity
public class Reservation {

 @Id
 @GeneratedValue
 private Long id;

 private String reservationName;

 public Reservation(String reservationName) {
 this.reservationName = reservationName;
 }

 Reservation() {
 }

 @Override
 public String toString() {
 return "Reservation{" + "id=" + id +
 ", reservationName='" +
 reservationName + '\'' +
 '}';
 }

 public Long getId() {
 return id;
 }

 public String getReservationName() {
 return reservationName;
 }
}

The Reservation entity is trivial; it’s just meant to demon-
strate that we can use the full power of JPA. We’ll use Spring
Data JPA, one module of the larger Spring Data project, which
features similar support for other persistence technologies
such as Oracle Database, MongoDB, Neo4j, Cassandra, and
others. It enables us to declaratively define a repository object,

based on interface method name conventions, such as this:

interface ReservationRepository extends
 JpaRepository<Reservation, Long> {

 Collection<Reservation>
 findByReservationName(String rn);
}

With this in place, we’ve also defined an @Bean provider
method in the ReservationServiceApplication class.
Because it’s annotated with @SpringBootApplication,
the ReservationServiceApplication class is also an
@Configuration class where @Bean provider methods may
live. Any @Configuration class may use defined beans as
return values from provider methods. This is an alternative
to annotating the component itself with stereotype anno-
tations like @Component, @RestController, and so on.
The returned object, of type CommandLineRunner, will be
run when the Spring Boot application starts up. Therefore,
this is an ideal place to insert some sample data for this
demonstration:

@Bean
CommandLineRunner runner(ReservationRepository rr) {
 return args -> Stream.of(
 "Julia", "Mia", "Phil", "Dave", "Pieter",
 "Bridget", "Stéphane", "Josh", "Jennifer")
 .forEach(n -> rr.save(new Reservation(n)));
 }

The Web
We can then create a REST API using Spring MVC (as well as
the Jersey JAX-RS implementation or Ratpack, for which there
are checkboxes in Spring Initializr). Here’s our code:

@RestController
class ReservationRestController {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

18

//web apps /

 private final ReservationRepository
 reservationRepository;

 @Autowired
 public ReservationRestController(
 ReservationRepository reservationRepository){
 this.reservationRepository =
 reservationRepository;
 }

 @RequestMapping(method = RequestMethod.GET,
 value = "/reservations")
 public Collection<Reservation>
 getReservations() {
 return
 this.reservationRepository.findAll();
 }
}

Bring up http://localhost:8080/reservations and
you’ll see the results returned in JSON, as in Figure 3.

This is a respectable first cut at a REST API, but what I
really want to do is map the state transitions of my entities—
turning creation, querying, deletion, and updates into HTTP
verbs. So, let’s remove the manual REST API we just created
and instead let the ReservationRepository that we cre-
ated earlier—which knows how to create, read, update, query,
and delete Reservation entities—handle this for us with
Spring Data REST.

We’ll simply revise the depository code, adding the req-
uisite @RepositoryRestResource and @RestResource
annotations.

@RepositoryRestResource
interface ReservationRepository extends
 JpaRepository<Reservation, Long> {

 @RestResource(path = "by-name",
 rel = "by-name")

 Collection<Reservation> findByReservationName(
 @Param("rn") String rn);
}

Bring up http://localhost:8080/reservations again
and you’ll see the same information as before along with
extra links. These links are metadata that are embedded in
the resource response. They provide a menu of paths that a
client may take that are related to the payload. You can add
custom links using ResourceProcessor implementations.
Scroll through the results. Each Reservation contains a link
to itself, aptly named self. Scroll further and you’ll see the
links to the search resource, where you can find more links
still, including one that exports our earlier custom finder
method, findByReservationName, as a search resource.
Now, without any a priori knowledge, a REST client can start
at / and interactively navigate through the resources using
the hypermedia (which in HTTP parlance refers to the previ-
ous links) provided by the links and the HTTP OPTIONS verb
to understand what’s possible.

Now, let’s add some web application functionality. We’ll
stand up a Spring MVC controller that processes an HTTP

Figure 3. Returned results as a JSON file

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

19

//web apps /

request, establishes model data, and then forwards it to a
Thymeleaf template for rendering.

@Controller
class ReservationMvcController {

 private final ReservationRepository
 reservationRepository;

 @Autowired
 public ReservationMvcController(
 ReservationRepository rr) {
 this.reservationRepository = rr;
 }

 @RequestMapping(method = RequestMethod.GET,
 value = "/reservations.mvc")
 public String renderReservations(Model model) {
 model.addAttribute("reservations",
 this.reservationRepository.findAll());
 // find template named 'reservations'
 return "reservations";
 }
}

A request to http://localhost:8080/reservations
.mvc ultimately renders an HTML template in the src/main/
resources/templates directory. It looks like this:

<!DOCTYPE HTML>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
<head>
 <title> Reservations </title>
</head>
<body>
<H1> Reservations </H1>
<div th:each="r : ${reservations}">
 <div>
 <b th:text="${r.id}">ID -

 Reservation Name

 </div>
</div>
</body>
</html>

The result of this is shown in Figure 4.
Many applications might simply deliver REST APIs and

serve a client-side JavaScript application that connects to
those endpoints. The assets for such an application would
live in the src/main/resources/static directory. They
will not be processed.

If you’re trying to build a data-driven user interface
quickly, you might use a UI component-based approach
such as the well-regarded, open source Vaadin Framework.
Earlier, I selected the Vaadin checkbox in Spring Initializr.
That selection brings in a third-party dependency to sup-
port an easy Spring Boot integration with Vaadin. Vaadin
builds on top of GWT; UI components consist of fast,
responsive transpiled client-side JavaScript. But in Vaadin
apps, business state lives on the server. Here’s a simple

Figure 4. The reservations application so far

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://vaadin.com/home
http://www.gwtproject.org/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

20

//web apps /

data grid to present the Reservation data, using Vaadin
components.

@SpringUI(path = "ui")
@Theme("valo")
class ReservationUI extends UI {

 private final ReservationRepository
 reservationRepository;

 @Autowired
 public ReservationUI(ReservationRepository
 reservationRepository) {
 this.reservationRepository =
 reservationRepository;
 }

 @Override
 protected void init(VaadinRequest request) {
 Grid table = new Grid();
 BeanItemContainer<Reservation> container =
 new BeanItemContainer<>(
 Reservation.class,
 this.reservationRepository.findAll());
 table.setContainerDataSource(container);
 table.setSizeFull();
 setContent(table);
 }
}

And that’s it! Run the application by going to http://
localhost:8080/ui and you’ll see the screen in Figure 5.

Testing
Naturally, we should test all the parts of the application.
The Spring MVC test framework makes short work of exer-
cising our HTTP endpoints, thanks to a fluid, built-in
domain-specific language (DSL).

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes =
 ReservationServiceApplication.class)
@WebAppConfiguration
public class ReservationServiceApplicationTests {

 private MediaType mediaType =
 MediaType.parseMediaType(
 "application/hal+json");

 private MockMvc mockMvc;

 @Autowired
 private WebApplicationContext
 webApplicationContext;

 @Before
 public void before() throws Exception {
 this.mockMvc =
 MockMvcBuilders.webAppContextSetup(
 this.webApplicationContext).build();
 }

Figure 5. The application using a UI library

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

21

//web apps /

 @Test
 public void contextLoads()
 throws Exception {
 this.mockMvc.perform(
 get("/reservations")
 .accept(this.mediaType))
 .andExpect(content().
 contentType(this.mediaType))
 .andExpect(status().isOk());
 }
}

This code uses the Spring MVC test framework, which is
a custom test runner that works with JUnit or TestNG. This
test framework is ideal for pseudo integration tests. Here,
I use it to stand up our Spring Boot application completely
without actually connecting to a socket. The Spring MVC test
framework dispatches calls through the whole Spring MVC
machinery and actually exercises all the web components,
but does so without sitting on a socket somewhere listening
for actual TCP packets coming in as HTTP. This means that
you don’t have to stand up a container just to test the frame-
work machinery or the components responsible for process-
ing requests.

Production
The application is now interesting, but being interesting just
isn’t enough. We need to get the software deployed. If
you’ve ever read Michael Nygard’s excellent book, Release
It!, then you know that the last mile between “code com-
plete” and “production ready” can be a long mile indeed!
Talk to enough organizations and you’ll realize that there’s
a litany of nonfunctional requirements, usually buried in
some wiki page somewhere, that each organization requires
its applications to satisfy before code can be moved to
production.

These aren’t exciting things, either. They’re not differen-

tiators. What does the application’s environment look like?
How do you capture growth metrics? Does your application
provide an endpoint to answer questions about its health?
How do you identify which version of the service is run-
ning? Which HTTP resources are exposed to traffic? These
questions, and many more besides, are answered thanks to
automatically created endpoints provided by the Spring Boot
Actuator, which is a module in Spring Boot designed to sup-
port operationalizing applications for production. Spring Boot
Actuator helps reduce or remove the list of nonfunctional
requirements that commonly gate our ability to move code
to production. It furnishes management endpoints such as
/health, /beans, /trace, /mappings, /metrics, /env,
and many more. These endpoints are useful and easily cus-
tomized. Let’s change the management endpoint’s prefix
with a property specified in the application.properties
file, where, along with application.yml, Spring Boot will
look to find configuration keys and values:

management.context-path=/admin

With this property, users will need to go to /admin/
health, /admin/env, and so on. If I add spring-boot-
starter-security to the CLASSPATH, I’ll get the default
HTTP BASIC authentication prompt with a default username
and password that will be printed on the console. I can del-
egate the HTTP BASIC authentication challenge to a Spring
Security AuthenticationProvider instead by configuring the
appropriate Spring Security options.

The health endpoint is interesting, because it measures
the health of the system. It automatically tells us whatever
it can about the technologies in play. It knows about the
file system, a DataSource connection pool, JavaMail, JMS,
Cassandra, Elasticsearch, Solr, MongoDB, RabbitMQ, Redis,
and many more technologies. We can augment this data with
a semantic HealthIndicator, if we want to:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

22

//web apps /

@Bean
HealthIndicator customHealthIndicator() {
 return new HealthIndicator() {
 @Override
 public Health health() {
 return Health.status("I <3 Java!")
 .build();
 }
 };
}

The kind of data it retrieves is shown in Figure 6.
The application automatically collects metrics for common

things—for example, requested HTTP resource counts, how
much memory is available, how many classes loaded, and so
on. In addition, any component in the application can inject a

CounterService to emit semantic metrics. If you configure
a MetricReporter from the excellent DropWizard Metrics,
or simply use one of Spring Boot’s built-in MetricWriter
implementations, you can collect and graph the metrics from
your applications in a single, integrated dashboard such as
Graphite, StatsD, and OpenTSDB.

Running the application is easy, too. You can choose to use
the self-contained JAR-based deployment by selecting Jar
for the packaging in Spring Initializr. Or you can deploy into
any servlet container such as Apache Tomcat/TomEE, Oracle
WebLogic or GlassFish, Payara Micro, IBM WebSphere, or Red
Hat’s WildFly application server by selecting .war for the
packaging in Spring Initializr. Modern cloud environments
such as CloudFoundry, Heroku, Google App Engine, and
OpenShift can also run Spring Boot applications.

Conclusion
This short tutorial has just barely scratched the surface.
Spring Boot can integrate many other technologies, including
many from Java EE: JAX-RS, JMS, the Servlet API, JTA, and
JDBC, as well as all the components from the Spring ecosys-
tem. It also provides the basis for Spring Cloud, which is a set
of components designed to support the creation of distrib-
uted systems based on microservices. Spring Boot is an opin-
ionated way to get going by leveraging default configurations
for common tasks. These configurations are often defined
and provided by the industry experts who lead the technolo-
gies being configured. To get the bits and start your journey,
check out Spring Initializr. </article>

Josh Long (@starbuxman) is the Spring developer advocate at
Pivotal, a Java Champion, the author of five books on programming
(including the upcoming Cloud Native Java), and the author of
three best-selling LiveLessons videos. He is also a longtime open
source contributor.

Figure 6. Data from monitoring the application’s health

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://metrics.dropwizard.io/
http://start.spring.io

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

23

//web apps /

OmniFaces is a utility library for JSF 2 developed by two
members of the JSF Expert Group: Bauke Scholtz and

Arjan Tijms. Its main purpose is to give JSF developers a
solution for day-by-day JSF-related problems and questions.
OmniFaces can be used in both JSF implementations, Mojarra
and MyFaces, and it works with existing JSF libraries (such
as PrimeFaces, RichFaces, ICEfaces, OpenFaces, and others).
In previous writing, I defined OmniFaces as “a utility library
for JSF and a comprehensive compendium of programming
techniques, design patterns and recipes for JSF developers.”
[OmniFaces won a 2015 Duke’s Choice Award from the Java
community. —Ed.]

The OmniFaces project started in March 2012, and the first
release (OmniFaces 1.0) took place on June 1 of that year. The
latest stable release is OmniFaces 2.2, released in late 2015.
According to the project founders, the original motivation for
the library was that the lead developers realized they each
had built libraries of routines that covered the same problems
and that they had separate but similar libraries they’d devel-
oped at work. It occurred to them that a single, integrated
library with no duplication of solutions would be ideal. This
led to OmniFaces. Currently, OmniFaces is on the road to ver-
sion 2.3 and, in the future, to version 3.0.

What Does OmniFaces Offer?
Today OmniFaces offers a significant number of utility com-
ponents, validators (including cross-field validation), convert-
ers, resource handlers, view handlers, tag handlers, exception

OmniFaces: Making JSF a Lot Easier
Solve many day-to-day JSF problems with a single, integrated utility library.

ANGHEL LEONARD handlers (such as an Ajax exception handler), extensionless
URL support, event listeners, CDI artifacts (for example, view
scope, cookie and init parameters injection, and eager beans),
and so on. In addition, it contains more than 300 utility
methods and functions. Via these utilities, your JSF code will
become less verbose, more loosely coupled, cleaner, and easier
to debug. Everything is available for testing (live demo) in the
OmniFaces Showcase.

Table 1 gives a quick overview of the contents and abilities
of OmniFaces. While using OmniFaces components, you can
develop new families of components, extend existing com-
ponents, suppress or add specific functionality, write custom
renderers, and perform other useful actions.

In addition to the capabilities shown here, OmniFaces ships
with features that support CDI, FacesViews, filters, managed
beans, render kits, scripts, and functions.

How OmniFaces Differs from Other JSF Libraries
To understand the difference, it is important to understand
the niche that OmniFaces occupies among the JSF librar-
ies. In Figure 1, you can see the location of OmniFaces on the
JSF map.

OmniFaces is not in the same category as PrimeFaces,
RichFaces, or BootsFaces. While PrimeFaces and RichFaces
can be considered mutually exclusive, this is not the case with
OmniFaces. Because it is a utility library, it can be employed
with or without PrimeFaces, RichFaces, and BootsFaces, rather
than as an alternative to these libraries.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://omnifaces.org/
https://javaserverfaces.java.net/
https://myfaces.apache.org/
http://www.primefaces.org/
http://richfaces.jboss.org/
http://www.icesoft.org/java/home.jsf
http://openfaces.org/
http://content.jsfcentral.com/c/journal_articles/view_article_content?groupId=35702&articleId=91827#.VhIY9vntmkq
http://showcase.omnifaces.org/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

24

//web apps /

Including OmniFaces in JSF Applications
OmniFaces can be added in a JSF application as a
JAR file or as a Maven dependency. Practically, it is
merely a matter of putting the OmniFaces JAR file
into the /WEB-INF/lib directory.

Maven users can add OmniFaces by adding the
corresponding Maven coordinates to the pom.xml
file. In the following example, I have added the
dependency for OmniFaces 2.2:

<dependency>
 <groupId>org.omnifaces</groupId>
 <artifactId>omnifaces</artifactId>
 <version>2.2</version>
</dependency>

In the JSF application below, I’ve added it just
ahead of the PrimeFaces library and Java EE 7:

<dependencies>
 <dependency>
 <groupId>org.omnifaces</groupId>
 <artifactId>omnifaces</artifactId>
 <version>2.2</version>
 </dependency>
 <dependency>
 <groupId>org.primefaces</groupId>
 <artifactId>primefaces</artifactId>
 <version>5.2</version>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>7.0</version>
 <type>provided</type>
 </dependency>
</dependencies>

C OMP ONEN T S (PA R T I A L L IS T).
Cache A SERVER-SIDE CACHE OF RENDERED MARKUP

GraphicImage LOADS IMAGES FROM byte[]/InputStream/SVG (OPTIONAL AS DATA URI)

Tree PROVIDES FULL CONTROL OVER THE MARKUP OF A TREE HIERARCHY

CommandScript GENERATES A JAVASCRIPT FUNCTION IN THE GLOBAL JAVASCRIPT SCOPE

DeferredScript DEFERS THE LOADING OF THE GIVEN SCRIPT RESOURCE TO THE WINDOW LOAD EVENT

Form KEEPS VIEW OR REQUEST PARAMETERS IN THE REQUEST URL AF TER A POST-BACK

IgnoreValidationFailed IGNORES VALIDATION FAILURES (INVOKE ACTION PHASE WILL BE E XECUTED ANYWAY)

Highlight HIGHLIGHTS ALL INVALID UIInput COMPONENTS AND THE ASSOCIATED L ABELS

Messages MULTIPLE for OPTIONS, SINGLE MESSAGE, HTML ESCAPING, ITERATION MARKUP CONTROL

VA LIDAT ORS (T O WRITE A ME S S AGE INTERP OL AT OR A ND CR O S S -FIELD VA LIDAT ORS , WHICH A RE NO T SUPP OR TED BY DEFAULT IN J SF).
JsfLabelMessageInterpolator ALLOWS A L ABEL TO APPEAR IN THE MIDDLE OF A BEAN VALIDATION MESSAGE

RequiredCheckboxValidator SOLVES THE required="true" AT TRIBUTE AND UISelectBoolean ISSUE

ValueChangeValidator VALIDATES ONLY WHEN THE SUBMIT TED VALUE IS REALLY CHANGED

validateAll VALIDATES IF ALL UIInputs HAVE BEEN FILLED OUT

validateAllOrNone VALIDATES IF ALL OR NONE OF THE UIInputs HAVE BEEN FILLED OUT

validateEqual VALIDATES IF ALL UIInputs HAVE THE SAME VALUE

validateMultiple VALIDATES MULTIPLE FIELDS BY A CUSTOM VALIDATOR METHOD

validateBean PROVIDES BEAN VALIDATION ON A PER-UICommand/UIInput COMPONENT BASIS, AS WELL AS
VALIDATING A GIVEN BEAN AT THE CL ASS LEVEL

E XC EP T ION H A NDL ER S (E S P E C I A L LY P OW ERF UL F OR C A P T URING A ND T RE AT ING “SIL EN T ” E XC EP T ION S IN A F RIENDLY M A NNER).
FacesMessageExceptionHandler ADDS EVERY E XCEPTION AS A GLOBAL FATAL FACES MESSAGE

FullAjaxExceptionHandler HANDLES AS NON-AJA X E XCEPTIONS ANY E XCEPTIONS THAT OCCUR DURING AJA X REQUESTS

C ON T E X T S .
OmniPartialViewContext E XTENDS AND IMPROVES THE STANDARD PARTIAL VIEW CONTE XT

Table 1. List of principal components and handlers in OmniFaces (continued on next page)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

25

//web apps /

For OmniFaces SNAPSHOTS, the num-
bering pattern is major_version.minor_
version-SNAPSHOT:

<dependency>
 <groupId>org.omnifaces</groupId>
 <artifactId>omnifaces</artifactId>
 <version>2.3-SNAPSHOT</version>
</dependency>

Note: Users of outdated environments who can’t
or won’t use CDI should use OmniFaces version
1.11 instead. It doesn’t contain anything from CDI,
so while it works, it doesn’t offer OmniFaces’ full
range of solutions.

The OmniFaces artifacts are available in the fol-
lowing XML namespaces:

xmlns:o="http://omnifaces.org/ui"
xmlns:of="http://omnifaces.org/functions"

Using OmniFaces
Probably, the best way to demonstrate OmniFaces
artifacts is to explore several examples. For the
rest of this article, I’ll solve common problems of
JSF applications by using OmniFaces. Additional
examples can be found here.
Combine script and stylesheet resources to improve
page loading. As a JSF developer, you should be
familiar with the mechanism of loading resources
in JSF. Basically, for each resource, JSF will fire a
separate GET request. This is a time-consuming
task, especially if there is a large number of
resources to load.

The OmniFaces CombinedResourceHandler
considerably improves page loading. This is

TAG H A NDL ER S .
converter PROVIDES SUPPORT FOR DEFERRED VALUE E XPRESSIONS IN ALL CONVERTER AT TRIBUTES

RestorableView RE-CREATES THE ENTIRE VIEW WHENEVER THE VIEW HAS BEEN E XPIRED

importConstants MAPS CONSTANTS OF THE GIVEN FQN OF A T YPE IN THE REQUEST SCOPE

importFunctions MAPS FUNCTIONS OF THE GIVEN FQN OF A T YPE IN THE “FACELET SCOPE”

validator PROVIDES SUPPORT FOR DEFERRED VALUE E XPRESSIONS IN ALL VALIDATOR AT TRIBUTES

viewParamValidationFailed HANDLES VIEW PARAMETER VALIDATION FAILURE VIA REDIRECT OR HT TP ERROR CODE

C ON V ER T ER S (T HE S E A DVA NC ED C ON V ER T ER S C L O S E G A P S IN J S F).
ListIndexConverter PERFORMS CONVERSION BASED ON THE POSITION (INDE X) OF THE SELECTED ITEM IN THE LIST

ListConverter WORKS DIRECTLY VIA A List OF ENTITIES (CANNOT USE ListIndexConverter)

SelectItemsConverter AUTOMATICALLY CONVERTS <f:selectItems> ENTITIES

SelectItemsIndexConverter SAME AS SelectItemsConverter, BUT DOES CONVERSION BASED ON THE POSITION (INDE X)

ValueChangeConverter DOES CONVERSION ONLY WHEN THE SUBMIT TED VALUE HAS CHANGED

GenericEnumConverter USED IN UISelectMany COMPONENTS WHOSE VALUE HAS BEEN BOUND TO A List<E> PROPERT Y
WHERE E IS AN ENUM

RE S O UR C E H A NDL ER S (H A NDL ING C DN S , MULT IP L E RE S O UR C E S IN A SINGL E C A L L , A ND S O ON).
CDNResourceHandler PROVIDES CDN URLS INSTEAD OF THE DEFAULT LOCAL URLS FOR JSF RESOURCES

CombinedResourceHandler CREATES A COMBINED RESOURCE FOR ALL SCRIPTS AND ONE FOR ALL ST YLESHEETS

UnmappedResourceHandler MAPS JSF RESOURCES ON A URL PAT TERN OF /javax.faces.resource/*

E V EN T L IS T ENER S .
InvokeActionEventListener WORKS WITH NEW <f:event> T YPES preInvokeAction AND postInvokeAction

ResetInputAjaxActionListener RESETS INPUT FIELDS THAT ARE NOT E XECUTED DURING AN AJA X SUBMIT, BUT WHICH ARE RENDERED/
UPDATED DURING AN AJA X RESPONSE

V IE W H A NDL ER S (A U S EF UL A ND C ORRE C T U S E C A S E F OR V IE W H A NDL ER S).
NoAutoGeneratedIdViewHandler DOESN’T ALLOW AUTO-GENERATED IDS (j_id AND SO ON)

Table 1. List of principal components and handlers in OmniFaces (continued from previous page)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://showcase.omnifaces.org/
http://showcase.omnifaces.org/resourcehandlers/CombinedResourceHandler

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

26

//web apps /

achieved by removing from the UIViewRoot all the separate
script and stylesheet resources that have the target attri-
bute set to "head" and combining them for all scripts (and
separately combining them for all stylesheets). So, instead
of firing a GET request per resource, the browser will fire
a single GET request for all scripts and another one for all
stylesheets. Further, the CombinedResourceHandler is
responsible for sequentially returning all the resources com-
bined in these requests.

Visually speaking, something like this:

<!-- stylesheets -->
<h:outputStylesheet name="css/style.css" />
<h:outputStylesheet name="css/page.css" />
...

<!-- scripts -->
<h:outputScript library="default"
 name="js/my_js.js" target="head"/>
<h:outputScript library="custom"
 name="js/custom1.js" target="head"/>
<h:outputScript library="custom"

 name="js/custom2.js" target="head"/>
...

<!-- deferred scripts -->
<o:deferredScript library="default"
 name="js/js2.js"/>
<o:deferredScript library="default"
 name="js/js2.js"/>
...

becomes this:

<!-- for stylesheets -->
<link type="text/css" rel="stylesheet"
href="/MyApp/faces/javax.faces.resource/...css?
ln=omnifaces.combined&v=1433659201062" />

<!-- for scripts -->
<script type="text/javascript"
src="/MyApp/faces/javax.faces.resource/...js?
ln=omnifaces.combined&v=1433659204389">

<!-- for deferred scripts -->
<script type="text/javascript">
OmniFaces.DeferredScript.add(
 '/MyApp/faces/javax.faces.resource/...js?
 ln=omnifaces.combined&v=1433659201450');
</script>

[The ... in these resources indicates an app-specific string
of characters, removed for legibility. —Ed.]

To get it to run, this handler needs to be registered, as fol-
lows, in faces-config.xml:

<application>
<resource-handler>
org.omnifaces.resourcehandler.CombinedResource
HandlerFigure 1. Where OmniFaces fits

Component Libraries Utility Libraries

PrimeFaces
RichFaces
ICEfaces
...

OmniFaces
DeltaSpike
JSFUtils
...

Implementations Application Servers

JavaServer Faces
(JSF)
Apache MyFaces

GlassFish
Wildfly
WebLogic

JS
R

31
4

JS
R

34
4

JSR 372

JSF...
JavaServer Faces

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

27

//web apps /

</resource-handler>
</application>

More details about configuring this handler are available
in the OmniFaces Showcase. You might also be interested in
CDNResourceHandler and UnmappedResourceHandler.
The select-items converter saves you from writing custom
converters for UISelectItems. Typically, <f:selectItems>
(or UISelectItems) points to a collection that provides the
selectable items with values (objects), which can be instances
of SelectItem or any other Java object. These instances are
then encapsulated by JSF in SelectItem instances.

To render each selectable item, JSF uses a string represen-
tation of the selectable item’s value (for example, it might
invoke the toString() method of the object). While the
rendering process of the selectable items works smoothly, the
conversion of the submitted strings to corresponding values
can be accomplished only if we indicate a custom converter,
which might need to do the job based on possibly expensive
service/DAO operations.

This problem is solved by OmniFaces, which provides a
general custom converter (SelectItemsIndexConverter)
capable of automatically converting the submitted strings to
corresponding values based on the position of the submitted
string (index) in the list of values.

In order to exemplify this case, first we need the base object
(value). Let’s use Player:

public class Player implements Serializable {

 private Long id;
 private String name;
 private String residence;
 private int age;

// constructor with id, name, residence and age

// getter and setter
// override equals() and hashCode()
}

A managed bean contains a List<Player>:

@Named
@ViewScoped
public class PlayerBean implements Serializable {
 private static final long serialVersionUID = 1L;
 private Player selected;
 private List<Player> topfive;
 ...
 // populate the list
 // getters and setters
}

Finally, we expose to the user the List<Player> via a
selection component (such as <h:selectOneMenu>):

<h:form>
 <h:outputLabel for="atp" value="Players: " />
 <h:selectOneMenu id="atp"
 value="#{playerBean.selected}">
 <f:selectItem itemLabel="Choose player"
 noSelectionOption="true" />
 <f:selectItems value="#{playerBean.topfive}"
 var="t" itemLabel="#{t.name},#{t.age}"
 itemValue="#{t}" />
 </h:selectOneMenu>
 <h:commandButton value="Select"/>
</h:form>

Selected: <h:outputText
 value="#{playerBean.selected.name},
 #{playerBean.selected.age}"/>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://showcase.omnifaces.org/resourcehandlers/CombinedResourceHandler
http://showcase.omnifaces.org/resourcehandlers/CDNResourceHandler
http://showcase.omnifaces.org/resourcehandlers/UnmappedResourceHandler
http://showcase.omnifaces.org/converters/SelectItemsIndexConverter

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

28

//web apps /

This will be rendered as expected, but, if we select and sub-
mit a Player string representation, then an error will occur.
This is a conversion error indicating that JSF cannot auto-
matically convert the submitted string into the selection. This
generates the message: Player: Conversion Error
setting value '3,ANDY MURRAY,London,27' for
'null Converter'.

Normally, at this point you must write a custom con-
verter especially for this case only, but OmniFaces provides
a general custom converter named SelectItems
IndexConverter. Once you specify this converter (via
omnifaces.SelectItemsIndexConverter), it automati-
cally converts the submitted strings into the corresponding
values (objects):

<h:selectOneMenu id="atp"
 value="#{playerBean.selected}"
 converter=
 "omnifaces.SelectItemsIndexConverter">
 ...
</h:selectOneMenu>

It’s simple to use, isn’t it? In addition, OmniFaces provides
an alternative to this approach, which converts the submit-
ted strings to corresponding values based on the toString()
implementation of those values. This converter uses the ID
omnifaces.SelectItemsConverter.
Provide full control over the markup of a tree hierarchy by declar-
ing the appropriate JSF components or HTML elements in the
markup. By default, JSF does not provide any built-in artifacts
dedicated to exposing or controlling the markup in a hierar-
chical tree structure, but such components are quite popular
among JSF developers.

The OmniFaces tree component provides a powerful and
extremely versatile hierarchical tree structure solution that
can be obtained via a TreeModel (with default implementa-

tions: ListTreeModel and SortedTreeModel) and four
tags: the main one, <o:tree> (which encapsulates the
entire tree structure), <o:treeNode> (a single tree node
within a parent <o:tree>), <o:treeNodeItem> (a single
child tree node within a parent <o:treeNode>), and
<o:treeInsertChildren> (which indicates the place to
insert the children of the current child tree node recursively
by an <o:treeNode> associated with the children’s level in
the same parent <o:tree>).

Let’s see a simple example, and let’s start with the model.
TreeBean uses ListTreeModel, which is a TreeModel
implementation that holds the tree children in an ArrayList:

@Named @ViewScoped
public class TreeBean implements Serializable {
 private static final long serialVersionUID = 1L;
 private TreeModel<String> tree;
 @PostConstruct
 public void init() {
 tree = new ListTreeModel<>();
 tree.addChild("Components Showcase")
 .addChild("OutputFamily")
 .addChild("ResourceInclude")
 .addChild("example 1")
 .addChild("source code")
 .getParent().getParent()
 .addChild("example 2")
 .addChild("source code")
 .getParent().getParent().getParent()
 .addChild("Conditional Comment")
 .addChild("...")
 .getParent().getParent().getParent()
 .addChild("UtilFamily")
 .addChild("MoveComponent")
 .getParent()
 .addChild("...");
 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://showcase.omnifaces.org/converters/SelectItemsConverter
http://showcase.omnifaces.org/components/tree

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

29

//web apps /

 // getter
}

In a JSF page, the <o:tree> does the work:

...
<o:tree value="#{treeBean.tree}" var="t">
 <o:treeNode>

 <o:treeNodeItem>

 #{t}
 <o:treeInsertChildren />

 </o:treeNodeItem>

 </o:treeNode>
</o:tree>
...

The output is shown in Figure 2.
The full application is available in the Tree app in the down-

loadable code.
Use the full Ajax exception handler. Starting with JSF 2, there
is a generic API that enables developers to write a global
exception handler. This is very helpful, especially when
we need to signal “silent” exceptions (such as Ajax excep-
tions) that are not reported to the user or are reported in
a very discreet manner. As you probably know, exceptions
that occur during Ajax requests are not treated the same as
exceptions that occur during non-Ajax requests. By default,
most of them are invisible to the client. Because users do
not receive any feedback about the success of Ajax requests,
users might become confused and restart the application,
resend the request, or take other actions.

The OmniFaces FullAjaxExceptionHandler enables
developers to handle exceptions that occur during Ajax

requests by using error pages configured in web.xml
(or web-fragment.xml). To exploit the FullAjax
ExceptionHandler, we need to explicitly configure
the FullAjaxExceptionHandlerFactory in faces-
config.xml.

<factory>
 <exception-handler-factory>
 org.omnifaces.exceptionhandler
 .FullAjaxExceptionHandlerFactory
 </exception-handler-factory>
</factory>

[In the snippet above, lines 3 and 4 should be entered as
a single line. —Ed.]

It is good practice to provide at least a fallback error page
whenever there is no match with any of the declared specific
exceptions. Now, Ajax exceptions will not occur imperceptibly
for the user, because they will be reported in the configured
error page. The user will now know that something went
wrong via messages in the error page and can act accordingly.
So, you must at least have either

Figure 2. Simple tree output

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/
https://bitbucket.org/javamagazine/magdownloads/
http://showcase.omnifaces.org/exceptionhandlers/FullAjaxExceptionHandler

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

30

//web apps /

<error-page>
 <error-code>500</error-code>
 <location>/WEB-INF/errorpages/500.xhtml
 </location>
</error-page>

or this:

<error-page>
 <exception-type>java.lang.Throwable
 </exception-type>
 <location>/WEB-INF/errorpages/500.xhtml
 </location>
</error-page>

Reference an image provided as an InputStream, byte[], or
data URI. Most JSF novices know how to use the built-in
<h:graphicImage> tag with the name and library attri-
butes to load an image from the well-known /resources
folder or from an external URL using the value or url attri-
butes. (If not, check out this article.) But what should be
done when the image is not present at the end of a URL, for
example, when it comes from a database, a web service, or a
WebSocket? In such cases, the image usually comes as a byte
array, InputStream, BLOB, or other form. In fact, what about
an image as a data URI?

OmniFaces provides the GraphicImage component, which
is an elegant solution for loading an image that comes as
a byte array or InputStream, and it is capable of extract-
ing a data URI also. The content type will be guessed based
on the content header (it supports the JPEG, PNG, GIF, ICO,
SVG, BMP, and TIFF formats). In addition, OmniFaces sup-
ports a “last modified” time stamp, which improves browser
caching. In addition, SVG images can be loaded via modes,
including the ability to show only a part of an SVG image
(via viewBox). There are many examples of displaying
images provided from an external resource, such as a serv-

let, that can be handled elegantly by OmniFaces.
Deal with a ViewExpiredException. A common issue in
JSF consists of dealing with a ViewExpiredException.
When a user session expires (such as when a session times
out, a logical view was removed from the logical views
map, or a session was programmatically invalidated), a
ViewExpiredException occurs.

OmniFaces provides a tag handler named Enable
RestorableView, which is capable of “swallowing” a
ViewExpiredException and restoring the view. I am here
talking about session restoring, not about session recovery,
which is a different challenge in JSF.

This tag handler can be used in a page by placing the
<o:enableRestorableView/> tag in <f:metadata>. This
allows us to instruct the view handler to re-create the entire
view whenever the view has been expired. You simply write it
like this:

<f:metadata>
<o:enableRestorableView/>
</f:metadata>

Conclusion
OmniFaces contains many other useful artifacts for JSF
developers. In this article, you saw just a small part of
what OmniFaces is capable of. As development continues,
OmniFaces is becoming a more mature and powerful JSF util-
ity library, thanks to the work of Bauke Scholtz and Arjan
Tijms, who scan the JSF community for newly reported issues
to solve. In this way, OmniFaces is always up to date on cur-
rent issues. As expected, OmniFaces is open source under the
Apache License 2.0. Enjoy! </article>

Anghel Leonard is a senior Java developer with many years of
experience in Java SE, Java EE, and frameworks. He has written
numerous articles about Java as well as several books, including
Mastering OmniFaces (Glasnevin Publishing).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.omnifaces-fans.org/2015/01/jsf-22-resources-and-resourcehandlers.html
http://showcase.omnifaces.org/components/graphicImage
http://showcase.omnifaces.org/taghandlers/enableRestorableView
http://showcase.omnifaces.org/taghandlers/enableRestorableView

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

31

//web apps /

The JAX-RS framework is a set of APIs for building applica-
tions and services that implement RESTful principles. It

provides a simple yet powerful programming model in which
plain old Java objects (POJOs) can be decorated with annota-
tions to expose their services and some of the business logic
over HTTP, the ubiquitous web protocol.

JAX-RS was standardized as a JCP specification JSR 311
with a 1.0 release in 2008 and also was made part of the
Java EE 6 specification JSR 316. JAX-RS 2.0 (JSR 339) came
into being in 2013 and is an integral part of the Java EE 7
specification (JSR 342). Work on the next edition, JAX-RS 2.1
(JSR 370), is in progress and is slated to be released as part
of the Java EE 8 platform.

Some of the widely used JAX-RS implementations are Jersey
(which is also the reference implementation),
RESTEasy, and Apache CXF. All these implemen-
tations provide additional useful features beyond
basic JAX-RS specification compliance and support.

In this article, I focus on the latest features in
JAX-RS 2.0. These include a new client API, filters,
interceptors, new ways to handle exceptions, and
advances in asynchronous programming, among
many other useful additions.

A Brand-New Client API
Prior to the addition of a full-fledged client
API, developers had to resort to using third-
party implementations or interacting with the
HTTPUrlConnection API in the JDK to interact

JAX-RS 2.0: Using All the Goodness
A new client API, filters, interceptors, and other useful REST features

with HTTP-oriented (REST) services. The client API (part of
the javax.ws.rs.client package) is fairly compact, lean,
and fluent. Let’s look at some of its classes and interfaces.

A ClientBuilder enables you to initiate the invoca-
tion process by providing an entry point via its overloaded
newClient methods and the build method. The Client
helps create a WebTarget instance with the help of over-
loaded target methods. WebTarget is a representation
of the URI endpoint for HTTP request invocation. It helps
configure various attributes such as query, matrix, and
path parameters and exposes overloaded request methods
to obtain an instance of Invocation.Builder, which is
responsible for further building the HTTP request and
configuring attributes such as headers, cookies, and cache

ABHISHEK GUPTA

Figure 1. The JAX-RS 2.x client

ClientBuilder Client WebTarget

Invocation Invocation.Builder

Builds a Client object
Builds a WebTarget
with the target URI

Specifies HTTP method
and auxiliary properties

Configures URI
parameters and
initiates request
building process

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://jcp.org/en/jsr/detail?id=311
https://jcp.org/en/jsr/detail?id=316
https://jcp.org/en/jsr/detail?id=339
https://jcp.org/en/jsr/detail?id=342
https://www.jcp.org/en/jsr/detail?id=370
https://jersey.java.net/
http://resteasy.jboss.org/
http://cxf.apache.org/docs/jax-rs.html

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

32

//web apps /

control along with content negotiation parameters such as
media types, language, and encoding. Finally, the Client
helps obtain an instance of the Invocation object by using
one of its buildXXX methods. An instance of Invocation
encapsulates an HTTP request and allows synchronous and
asynchronous request submission via overloaded versions of
the invoke and submit methods, respectively. Figure 1 illus-
trates this sequence.

Let’s look at an example:

Client client = ClientBuilder.newClient();
WebTarget webTarget =
 client.target("http://service.com/user")
 .queryParam("card", "4275391126915480");
Invocation.Builder builder =
 webTarget.request("text/plain");
Invocation invocation =
 builder.header("testheader","testvalue")
 .buildGet();
Response response = invocation.invoke();

Now, let’s dissect this code snippet to gain a better under-
standing of what’s going on.

An instance of Client, obtained via the Client
Builder class, is used to specify the target URI. An
instance of WebTarget is created as a result; it is fur-
ther used to specify the expected response/media type
(equivalent to an Accept HTTP header) and associated
URI (path and query) parameters. This creates an instance
of Invocation.Builder, which further builds a complete
HTTP GET request. The Invocation instance is used to
deliver the request to the server.
The Configurable interface. The Client, ClientBuilder,
WebTarget, and Invocation objects implement the
javax.ws.rs.core.Configurable interface. This allows
them to define custom JAX-RS components such as filters,
interceptors, entity providers (message readers and writers),

and so on. This is made pos-
sible using the overloaded ver-
sions of the register method,
which I’ll discuss shortly. Note
that this API is applicable to
server-side JAX-RS compo-
nents (filters, interceptors, and
so on) as well.

Filters
Filters and interceptors (dis-
cussed later) are another big-
ticket feature in JAX-RS 2.0.
They provide aspect-oriented
programming (AOP)–like capa-
bilities within JAX-RS applica-
tions and enable developers
to implement cross-cutting,
application-specific concerns,
which ideally should not be
sprinkled all over the business logic. These capabilities
include authentication, authorization, request/response vali-
dation, logging, and so forth. The AOP-based programming
model involves interposing in methods of JAX-RS resource
classes and dealing with (or mutating) components of HTTP
request/response headers, request URIs, and the invoked
HTTP method (GET, POST, and the others).
Server-side request filters. Server-side request filters act on
incoming HTTP requests from the clients. They are called
prior to JAX-RS resource method invocation, thus providing
an opportunity to act on certain characteristics of the incom-
ing HTTP requests.

To implement a server-side request filter, implement the
javax.ws.rs.container.ContainerRequestFilter
interface, which is an extension provided by JAX-RS. An
instance of the javax.ws.rs.container.Container

Server-side response
filters are similar to
their counterpart
(request filters) in terms
of their utility (the read
and mutate aspects of
the response, for example,
HTTP headers) and the
programming model (for
example, being executed
as a chain in a user-
defined or default order).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

33

//web apps /

RequestContext interface is seamlessly injected by the
container into the filter method of ContainerRequest
Filter. It is a mutable object (on purpose) and exposes
methods to access and modify HTTP request components.

public interface ContainerRequestFilter{
 public void filter(
 ContainerRequestContext reqCtx) throws
 IOException;
}

A JAX-RS request-processing pipeline involves dispatch-
ing an HTTP request to the appropriate Java method in the
resource classes based on a matching algorithm implemented
by the JAX-RS provider. Server-side request filters take this
into account and are divided into two categories: prematching
and postmatching.

Prematching filters are executed before the incoming HTTP
request is mapped/dispatched to a Java method. A prematch-
ing filter can be configured easily by using the javax.ws.rs
.container.PreMatching annotation on the class. Note
that the javax.ws.rs.ext.Provider annotation on the
implementation class, as shown next, is required for the
JAX-RS runtime to recognize the filter as a JAX-RS filter.

@Provider
@PreMatching
public class PreMatchingAuthFilter{
 public void filter(
 ContainerRequestContext reqCtx)
 throws IOException {
 if(reqCtx.getHeaderString(
 "Authorization") == null){
 reqCtx.abortWith(
 Response.status(403).build());
 }else{
 //check credentials....
 }

 }
}

Postmatching filters are executed by the JAX-RS container
only after the completion of the method dispatch/matching
process. Unlike prematching filters, these filters do not need
an explicit annotation. As a result, filter classes without the
@PreMatching annotation are assumed to be postmatching
by default. The following code shows an example in use:

@Provider
public class PostMatchingFilterExample{
 public void filter(ContainerRequestContext reqCtx)
 throws IOException{
 System.out.println(
 "Referrer: " +
 reqCtx.getHeaderString("referrer"));
 System.out.println(
 "Base URI: "+
 reqCtx.getUriInfo().getBaseUri());
 System.out.println(
 "HTTP Request method: "+
 reqCtx.getMethod());
 }
}

A JAX-RS application can have multiple filters (forming
a chain-like structure), which are executed in a developer-
defined order (more on this shortly) or in a default container-
driven order. However, it is possible to break the chain of
processing by throwing an exception from the filter imple-
mentation logic or by calling the abortWith method. In either
case, the subsequent filters in the chain are not invoked.
Server-side response filters. A server-side response filter is
invoked by the runtime after a response is generated by the
JAX-RS resource method before dispatching the response to
the caller/client. Response filters are similar to their coun-
terpart (request filters) in terms of their utility (the read and

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

34

//web apps /

mutate aspects of the response—for example, HTTP headers)
and the programming model (for example, being executed as
a chain in a developer-defined or default order).

Setting up a server-side response filter is as simple as
providing an implementation for the javax.ws.rs
.container.ContainerResponseFilter interface. Just
like its server-side request counterpart, the injection of
ContainerResponseContext into the filter method of the
ContainerResponseFilter interface is taken care of by the
JAX-RS runtime. Server-side response filters also need to be
annotated with the javax.ws.rs.ext.Provider annota-
tion in order for the JAX-RS runtime to recognize them. An
example of this follows:

@Provider
public class AContainerResponseFilter{
 public void filter(
 ContainerRequestContext reqCtx,
 ContainerResponseContext resCtx)
 throws IOException{
 //adding a custom header to the response
 resCtx
 .getHeaders()
 .add("X-Search-ID",
 "qwer1234-tyuio5678-asdfg9876");
 }
}

Client-side filters, predictably, include request and response
filters, which I’ll quickly summarize.
Client-side request filters. These are invoked after the HTTP
request has been constructed but prior to the request being
dispatched to the server. This type of filter provides an
opportunity to mutate the properties of the HTTP request
(such as headers and cookies). To implement a client-side
request filter, implement the extension interface provided by
javax.ws.rs.client.ClientRequestFilter.

Client-side response filters. Client-side response filters are
invoked after the HTTP response has been received from
the server but before it is dispatched to the caller/client for
processing. Like client-side request filters, these filters pro-
vide an opportunity to mutate the properties of the HTTP
response. To use a client-side response filter, implement the
extension interface provided by javax.ws.rs.client
.ClientResponseFilter, as shown next.

public class ClientResponseLoggerFilter {
 public void filter(
 ClientRequestContext reqCtx,
 ClientResponseContext resCtx)
 throws IOException{
 System.out.println(
 "Response status: " +
 resCtx.getStatus());
 }
}

Interceptors
Interceptors are similar to filters in the sense that they
are also used to mutate HTTP requests and responses,
but the major difference lies in the fact that interceptors
are used primarily to manipulate HTTP message payloads.
They are divided into two categories, javax.ws.rs.ext
.ReaderInterceptor and javax.ws.rs.ext
.WriterInterceptor, which are used to process HTTP
requests and responses, respectively. Note that, unlike filters,
the same set of interceptors is applicable on the server side
and the client side.

Server-side interceptors need to be annotated with
@Provider for the JAX-RS runtime to detect them. Client-
side interceptors need to be registered with ClientBuilder,
Client, or WebTarget class or interface (using the register
method).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

35

//web apps /

ReaderInterceptor. This type of interceptor is a contract
(extension interface) provided by the JAX-RS API. On the
server side, reader interceptors act on HTTP payloads sent
by the client, while on the client side, reader interceptors are
supposed to act on (read and mutate) the request payload
prior to it being sent to the server side.
WriterInterceptor. This type of interceptor on the server side
acts on HTTP payloads produced by the resource methods,
while on the client side, a writer interceptor is supposed to act
on (read and mutate) the payload sent by the server prior to
it being dispatched to the caller. This code shows the server-
side variant in operation:

public interface WriterInterceptor{
 public void aroundWriteFrom(
 WriterInterceptorContext writerCtx)
 throws IOException, WebApplicationException;
}

JAX-RS interceptors are
invoked in a chain-like fashion
(similar to filters) and are
triggered only when entity
providers (javax.ws.rs
.MessageBodyReader
and javax.ws.rs
.MessageBodyWriter) are
required to convert HTTP
messages to and from their
Java object representations.
Both ReaderInterceptor
and WriterInterceptor wrap
around MessageBodyReader
and MessageBodyWriter,
respectively. Hence, they are
executed in the same call stack.

Binding Strategies for Filters and Interceptors
JAX-RS defines multiple ways that filters and interceptors can
be bound to their target components. For server-side filters,
there is the global default behavior plus named binding and
dynamic binding. Let’s look at these briefly.
Global default behavior. By default, JAX-RS filters and intercep-
tors are bound to all the methods of the resource classes in
an application. That is, both request (prematching and post-
matching) and response filters will be invoked whenever any
resource method is invoked in response to an HTTP request
by the client. This convention can be overridden by using
named binding or dynamic binding.
Named binding. To handle filter and interceptor scoping in a
fine-grained manner (on a per-resource class or per-method
basis), you can leverage the @NameBinding annotation. Doing
this involves several steps:
■■ Step 1. Define a custom annotation with the @NameBinding

annotation.

@NameBinding
@Target({ ElementType.TYPE,
 ElementType.METHOD })
@Retention(value =
 RetentionPolicy.RUNTIME)
public @interface Audited { }

■■ Step 2. Apply the custom annotation to the filter or
interceptor.

@Provider
@Audited
public class AuditFilter implements
 ContainerRequestFilter {
 //filter implementation...
}

■■ Step 3. Apply the same annotation to the required resource

JAX-RS 2.0 includes
a brand-new API
for asynchronous
processing that
includes server-side
as well as client-side
counterparts. Being
asynchronous inherently
implies request
processing on a different
thread than the thread
that initiated the request.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

36

//web apps /

class or method. If it is applied to a class, the filter or inter-
ceptor will be bound to all the resource methods of the class.

@GET
@Path("{id}")
@Produces("application/json")
@Audited
public Response find(
 @PathParam("id") String custId){
//search and return customer info
}

Dynamic binding. JAX-RS provides the DynamicFeature
interface to help bind filters and interceptors dynamically
at runtime. (They can be used in tandem with the more
static way of binding, which is made possible by using the
@NameBinding annotation just discussed.)

public interface DynamicFeature {
public void configure(
 ResourceInfo resInfo,
 FeatureContext ctx);
}

The injected instance of the ResourceInfo interface helps
you choose the resource method in a dynamic fashion by
exposing various methods, and the FeatureContext inter-
face allows you to register the filter or interceptor once the
resource method has been selected. The following code shows
an example:

@Provider
public class DynamicAuthFilterFeature
 implements DynamicFeature {
 @Override
 public void configure(
 ResourceInfo resInfo, FeatureContext ctx) {
 if (UserResource.class
 .equals(resInfo.getResourceClass()) &&

 resInfo.getResourceMethod().getName()
 .contains("PUT")) {
 ctx.register(
 AuthenticationFilter.class);
 }
 }
}

Binding and Registering Client-Side Filters and
Interceptors
We saw that a (class-level) @Provider annotation is
required for server-side filters. On the client side, filters
and interceptors are registered using ClientBuilder,
Client, or WebTarget interfaces, all of which implement
the javax.ws.rs.core.Configurable interface, which
provides multiple overloaded versions of the register
method.

Ordering Filters and Interceptors
The @Priority annotation can be used to define the order
of execution of filters and interceptors. It accepts a numerical
value that is interpreted differently by request and response
filters and interceptors.

The request filters (ContainerRequestFilter and
ClientRequestFilter) and interceptors (Reader
Interceptor and WriterInterceptor) are executed in
ascending order of their priorities. In other words, the
lesser-valued @Priority annotated providers are
executed first.

The response filters (ContainerResponseFilter and
ClientResponseFilter) are executed in exactly the oppo-
site (that is, descending) order. In the absence of a @Priority
annotation, a default value is assumed. It is defined by the
USER constant in javax.ws.rs.Priorities (this equals
5,000). Priorities of client-side components can be set
using the register method of interfaces implementing
Configurable.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

37

//web apps /

Support for Asynchronous Processing
JAX-RS 2.0 includes a brand-new API for asynchronous
processing that includes server-side as well as client-
side counterparts. Being asynchronous inherently implies
request processing on a different thread than the thread
that initiated the request. From a client perspective, asyn-
chronous processing prevents blocking the request thread,
because no time is spent waiting for a response from the
server. Similarly, asynchronous processing on the server side
involves the suspension of the original request thread and
the initiation of request processing on a different thread,
thereby freeing up the original server-side thread to accept
other incoming requests. The end result of asynchronous
processing (if it is leveraged correctly) is scalability, respon-
siveness, and greater throughput.
Server-side asynchronous processing. The server-side asyn-
chronous programming model is mainly powered by the fol-
lowing API abstractions: the @javax.ws.rs.container
.Suspended annotation and the javax.ws.rs.container
.AsyncResponse interface.

An instance of AsyncResponse can be transparently
injected as a method parameter (of a JAX-RS resource class)
by annotating it with @Suspended. This instance serves as a
callback object to interact with the caller/client and perform
operations such as response delivery (postrequest process-
ing completion), request cancellation, error propagation, and
so forth.

@GET
@Path("{id}")
public void search(
 @Suspended AsyncResponse asyncResp,
 @PathParam("id") String id){
 //launching search in a new thread
 new Thread(){
 public void run(){
 //execute search op and resume

 UserInfo user = //obtain via search...
 asyncResp.resume(user);
 }
 }.start();
}

To propagate responses and exceptions, use the overloaded
versions of the resume method on the AsyncResponse inter-
face to return responses or exceptions back to the client.

To handle request processing timeouts, configure a time-
out after which an HTTP 503 error response is returned
to the client. This can be achieved by configuring a time-
out threshold. By default, a timeout triggers an HTTP 503
error response. However, this can be overridden by reg-
istering a javax.ws.rs.container.TimeoutHandler
implementation.
javax.ws.rs.container.CompletionCallback repre-

sents a callback interface whose implementation can be reg-
istered in order to execute business logic after the completion
of the request. It is possible to terminate request processing
by using overloaded versions of the cancel method. This
results in an HTTP 503 error response being sent to the client.
Client-side asynchronous processing. The JAX-RS API allows
asynchronous request invocations using the Invocation and
the AsyncInvoker interfaces. The Invocation interface
handles asynchronous submission via overloaded versions
of the submit method, while the AsyncInvoker interface
supports asynchronous invocation with dedicated methods
(get(), post(), put(), and so on) for standard HTTP actions:
GET, PUT, POST, DELETE, HEAD, TRACE, and OPTIONS.

Once registered, an implementation of the Invocation
Callback will automatically be executed once the asynchro-
nous request is processed. It provides the ability to account
for scenarios that cause exceptions or that execute suc-
cessfully. In the event that a Future object is obtained and
no callback has been registered, manually poll it in order

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

38

//web apps /

to interact with the response. isDone, get, and cancel
are some of the methods that can be invoked. The fol-
lowing illustrates response handling via a callback and a
Future object:

Invocation.Builder builder1 = //...
AsyncInvoker invoker = builder1.async();

//obtain a Future
Future<Response> future1 = invoker.get();

//create another builder
Invocation.Builder builder2 = ...
Invocation invocation = builder2.buildGet();

//provide a callback
Future<Response> future2 =
 invocation.submit(
 new InvocationCallback<Customer>(){
 public void completed(Customer cust){
 System.out.println(
 "Customer ID:" + cust.getID());
 }
 public void failed(Throwable t){
 System.out.println(
 "Unable to fetch Cust details: " +
 t.getMessage());
 }
});

Enhanced Exception Handling
Before looking at the other new features in JAX-RS 2.0,
let’s review some of the existing exception-handling capa-
bilities provided by the framework for robust exception han-
dling. The javax.ws.rs.core.Response object allows
you to wrap an HTTP error state and return it to the caller.
A javax.ws.rs.WebApplicationException (unchecked
exception) can be used as a bridge between the native busi-

ness- or domain-specific exceptions and an equivalent HTTP
error response. A javax.ws.rs.ext.ExceptionMapper
represents a contract (interface) for a provider that
maps Java exceptions to javax.ws.rs.core.Response
objects. It can be thought of as an enhanced version of a
javax.ws.rs.WebApplicationException and helps
embrace the “don’t repeat yourself” (DRY) principle for
exception handling by allowing you to define flexible map-
pings between business-logic exceptions and the desired
HTTP response, for example:

public class BookNotFoundMapper implements
 ExceptionMapper<BookNotFoundException>{
 @Override
 Response toResponse(
 BookNotFoundException bnfe){
 return Response.status(404).build();
 }
}

JAX-RS 2.0 has been supplemented with unchecked

Table 1. How exception classes map to HTTP error codes

E XC EP T ION H T T P ERR OR C ODE
BadRequestException 400

ForbiddenException 403

InternalServerErrorException 500

NotAcceptableException 406

NotAllowedException 405

NotAuthorizedException 401

NotFoundException 404

NotSupportedException 415

ServiceUnavailableException 503

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

39

//web apps /

exceptions that inherit from javax.ws.rs.Web
ApplicationException. This design relieves you from hav-
ing to build and throw a WebApplicationException with
explicit HTTP error information. The new exceptions are
intuitively named, and each of them maps to a specific HTTP
error scenario (by default). This means that throwing any of
these exceptions from your resource classes will result in a
predefined (as per mapping) HTTP error response being sent
to the client; that is, the client would receive an HTTP 403
in the event that you throw a NotAuthorizedException
(detailed mapping in Table 1). The exceptions’ behavior can
also be modified at runtime by using the ExceptionMapper
to return a different Response object. Figure 2 shows the new
exception hierarchy.

A mapping of these exception classes to the corresponding
HTTP error codes is shown in Table 1.

Other Notable Enhancements
Apart from the big-ticket features, several other useful
enhancements were introduced as part of JAX-RS 2.0, which
you should use if they fit your application.
@BeanParam. This annotation can be used to inject a custom
POJO or bean whose instances can be annotated with various
Param annotations such as @HeaderParam, @CookieParam,
@PathParam, @QueryParam, and so on. As shown below, it
provides a convenient way to capture HTTP URI parameters
with the help of simple POJOs instead of injecting individual
components from the HTTP request into JAX-RS resources:

public class CustomerSearchRequest{
 @QueryParam("id")
 private String userid;

 @HeaderParam("Accept")
 private String accept;

 @CookieParam("lastAccessed")
 private Date lastAccessed;
 //getters to fetch the values
}

The JAX-RS runtime injects an instance of the @javax
.ws.rs.BeanParam annotated method argument (or an
instance variable).
@ConstrainedTo. There are certain provider components in
JAX-RS that are applicable to the server side and the cli-
ent side. Interceptors are a good example where both
ReaderInterceptor and WriterInterceptor can be
applied on both the server side and the client side. The
@javax.ws.rs.ConstrainedTo annotation can applied on
a provider class in order to (explicitly) restrict its contextual Figure 2. The hierarchy of JAX-RS 2.0 exceptions

WebApplicationException

ServerErrorException

ClientErrorException

RedirectionException

ServiceUnavailableException

InternalServerErrorException

BadRequestException

ForbiddenException

NotAcceptableException

NotAuthorizedException

NotFoundException

NotSupportedException

NotAllowedException

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

40

//web apps /

usage to either the client side or the server side.
ParamConverter. The ParamConverter interface comes in
handy when handling custom objects or POJOs that do not
satisfy the prerequisites for automatic injection (having a
public constructor that takes a String argument or having
a static valueOf method that takes a String argument and
returns an instance of the same type as the POJO). An imple-
mentation of this interface can be used to provide custom
logic for conversion of String parameters obtained via the
Param annotations (@QueryParam, @PathParam, and so on)
into custom POJOs.

Conclusion
The JAX-RS framework serves as a solid platform for build-
ing REST-oriented applications by providing a much needed
abstraction on top of HTTP. The 2.0 release is a major over-
haul with significant additions to the API. If you’re not using
the full range of options JAX-RS offers you, chances are good
you’re carrying around handwritten code that would benefit
from being replaced by these capabilities. </article>

Abhishek Gupta is a Java EE developer, an architect, and a con-
sultant specializing in the Oracle Identity Governance (middleware)
product stack. His other areas of interest include scalable architec-
ture, distributed caching technologies, and design patterns.

Latest JAX-RS 2.0 specification
Jersey
Roy Fielding’s seminal paper on REST

learn more

JEP 254 proposes changing the internal representation
of strings inside the JVM. As most readers surely know,
strings are stored using UTF-16, which uses two bytes per
character. This proposal suggests using a more compact,
one-byte-per-character representation internally: “Data
gathered from many different applications indicates that
strings are a major component of heap usage and, more-
over, that most String objects contain only Latin-1 char-
acters. Such characters require only one byte of storage,
hence half of the space in the internal char arrays of such
String objects is going unused,” says the JEP proposal.

Changing to the more compact form would not affect
existing code or any APIs; it would be a purely internal
change inside the JVM and not visible to programmers.

Interestingly, the information on the JEP’s web page
reveals that a string compression feature was tested in
Java 6. It converted String.value to an Object that pointed
either to an array of 7-bit characters or an array of regu-
lar Java characters. That feature, though, was removed
subsequently.

JEP 254: Compact Strings
FEATURED JDK ENHANCEMENT PROPOSAL

//java proposals of interest /

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://jcp.org/aboutJava/communityprocess/mrel/jsr339/index.html
https://jersey.java.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://openjdk.java.net/jeps/254

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

41

//web apps /

Not too long ago, a large gap existed between desktop
applications and web applications. If you go back 10 years,

desktop applications were noticeably more responsive, had
far better user interfaces, and overall presented a much better
user experience. A major reason why web-based applications
were far behind in user experience was because they were not
as responsive to server state changes as their desktop coun-
terparts, and users had to update a whole page to get new data
on the screen. Back then, in order to compete with desktop
apps, companies that produced web applications used a vari-
ety of different tactics. They used applets, Adobe Flash appli-
cations, Comet, or similar frameworks that were popular at
the time, while others used raw Ajax calls. Even with all these
technologies, web apps couldn’t compete with desktop soft-
ware for usability.

Nowadays, web applications are expected to be interactive,
have a stellar-looking UI, and do almost as much as their
desktop counterparts. With rich front-end UI frameworks
such as Bootstrap and processing frameworks such as jQuery
and Angular JS, it is much easier to build applications that are
easy on the eyes and can quickly respond to user input noti-
fying a server about changes made in the UI.

But what about propagating the changes from the server
to the web clients? After all, given today’s cutting-edge
technology, we are used to and expect almost instanta-

neous UI feedback to anything that is happening to the
information on the server. In this article I explore one
such solution—long polling—and briefly take a look at
its alternatives.

Long Polling and Its Alternatives
For a long time, web applications were developed in an
n-tiered (usually three-tiered) architecture, in which the cli-
ent initiated requests for data from the server. There was no
way for the server to push data to the client without the cli-
ent requesting an update. Yet in many applications, a change
on the server needs to be propagated to the clients in a timely
manner. To work around this limitation, a technique known
as long polling can be used.

Long polling is a technique used to push updates to a web
client. After a client requests new information, the server
holds the request until new data becomes available. Once the
server receives new data, it completes the client’s response
by sending the data to the client. At this point the server
can either keep the connection open while sending further
updates to the client as they happen, or close the connec-
tion right away. In the latter case, once the client receives the
response from the server and the connection is closed, the
client immediately sends another request for an update and
the operation is repeated.

Long Polling with Asynchronous
Servlets
The reliable workhorse of client/server communications is the easy-to-use fallback when other
methods don’t work.HENRY NAFTULIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

42

//web apps /

Long polling has several variants. The simplest version
is achieved with the client polling the server in a specified
interval. Upon receipt of such a request, the server responds
immediately. It either sends the latest data to the client or
informs the client that it has no new data to share. This sim-
ple polling technique works for some applications for which
updates are infrequent and displaying stale data is not prob-
lematic. Another version of long polling, the one I discuss
in this article, is used when the server holds onto the client
request and does not respond until the data that the client
has asked for is available.

The principal alternatives to long polling are WebSocket and
Server-Sent Events (SSE). WebSocket is currently a widely used
alternative. It is a standard protocol providing a full-duplex
communication channel over a single TCP connection. One of
the biggest advantages of WebSocket is that it can drastically
reduce the amount of network traffic between the server and
the clients. The disadvantages are that not all browsers sup-
port it, and the older network routers that are optimized for
the HTTP protocol can cache or close your WebSocket con-
nection. This is why some connection libraries upgrade to the
WebSocket protocol if it’s available and fall back to the long-
polling solution if it’s not. [An article about using WebSocket
for a project similar to the one in this article can be found on
page 47 of this issue. —Ed.]

SSE is another standard technology in which a browser
receives automatic updates from a server via an HTTP con-
nection. It is designed to be efficient while pushing data to
clients. The protocol has automatic reconnection and other
useful features built in, such as automatic tracking of the
last-seen message. Still, not all browsers support it, and in
such cases the web solutions are usually programmed to fall
back to using long-polling methods.

As such, long polling remains a significant player and a
reliable solution. It is useful to know how it works and how to
implement it efficiently.

Long Polling Before Servlet 3.0
Before the Servlet 3.0 specification, there were two server-
threading models: thread per connection and thread per request.
In the thread-per-connection model, a thread is associ-
ated with every TCP/IP connection, and the server can scale
to a very high number of requests per second when these
requests come from the same set of clients. However, this
model exhibits scalability issues. The reason is that for most
websites, the users initiate an action and then the connection
stays mostly idle while users read the pages and decide what
to do next. Hence, the threads tied to a connection are sitting
idle. To improve scalability, the web servers can use a thread-
per-request model. In this model, after servicing the request,
the thread can be reused to service a request from a different
client. This model allows for much greater scaling of the user
base at the minor expense of increased time servicing each
request. This expense is due to the thread scheduling that
takes place. All major web servers today use the thread-per-
request model.

Yet, with long polling, the difference in scalability between
thread per connection and thread per request is blurred. This
is because each request must wait for data to be available on
the server before generating the response. Waiting in the
servlet is inefficient, because the server thread that could be
used to service another request is blocked. Prior to Servlet
3.0, this resulted in poor scalability as users were added to
the application.

Servlet 3.0 Changes Long Polling
Servlet 3.0 introduced asynchronous processing, which is a way
for servers to process requests, particularly those in which a
long-running operation such as a remote call or an applica-
tion event must happen before a response can be generated.
Prior to the Servlet 3.0 specification, a servlet would block a
response thread and hold on to other limited resources while
it waited for a response to be generated. With asynchronous

Nowadays, web
applications
are expected to
be interactive,
have a stellar-
looking UI, and do
almost as much
as their desktop
counterparts.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

43

//web apps /

processing enabled, we can use a different thread to process
the request and dispatch a response to the user. This change
frees the original servlet request thread right away, so that it
is returned to the servlet container to service other requests
from other users.

Servlet 3.0 makes coding asynchronous processing sim-
ple by introducing AsyncContext—an execution context
for asynchronous operations. AsyncContext encapsu-
lates servlet request and response and lets you work with
them outside of the original servlet processing thread.
To use AsyncContext, you first need to indicate your
intent to the servlet container—for example, by adding
asyncSupported=true to your servlet annotation. Then, to
put a request into asynchronous mode, you need to create an
instance of AsyncContext inside the servlet’s service call
method. This can be done with

AsyncContext asyncContext =
 request.startAsync(request, response);

At this point, the asynchronous request processing can
be delegated to a different thread or put in a queue for pro-
cessing later. Because servlet request and response objects
are encapsulated with AsyncContext, they are available to
any thread and are not tied to the original servlet thread.
This allows the original servlet thread to finish the ser-
vice call without waiting for the asynchronous response to
be completed and to be available to service requests from
other clients.

A Simple Example of Asynchronous Long Polling
Let’s look at the simple example of a web chat application
that demonstrates the advantages of asynchronous servlet
processing. In this application, the user types a username and
a message and then clicks Send (see Figure 1). This message
will then appear on all the browsers polling the chat URL.

The code in Listing 1 shows the key communication portions
of the chat app.

Listing 1.
@WebServlet(urlPatterns="/chatApi",
 asyncSupported=true,
 loadOnStartup = 1)
public class AsyncChatServletApi
 extends HttpServlet {
 ...
 private static final int
 NUM_WORKER_THREADS = 10;
 Lock lock = new ReentrantLock();
 LinkedList<AsyncContext> asyncContexts =
 new LinkedList<>();

 private AsyncListener listener =
 new ChatAsyncListener();
 @Override
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {
 AsyncContext asyncContext =

Figure 1. Chat app that broadcasts incoming messages

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

44

//web apps /

 request.startAsync(request, response);

 asyncContext.setTimeout(-1);
 asyncContext.addListener(listener);
 try {
 lock.lock();
 asyncContexts.addFirst(asyncContext);
 } finally {
 lock.unlock();
 }
 }

 @Override
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {

 final String message = getMessage(request);
 Collection<AsyncContext> localCopy;
 try {
 lock.lock();
 localCopy= asyncContexts;
 asyncContexts = new LinkedList<>();
 } finally {
 lock.unlock();
 }

 for(AsyncContext asyncContext : localCopy) {
 Runnable runnable =
 new RunnableWriter(asyncContext, message);
 executor.execute(runnable);
 }
 localCopy.clear();
 }

 private String getMessage(...) { ... }

 class RunnableWriter implements Runnable {
 private final AsyncContext asyncContext;
 private final String message;

 public RunnableWriter(..) { .. }

 @Override
 public void run() {
 try(PrintWriter writer =
 asyncContext.getResponse().getWriter()) {
 writer.println(message);
 writer.flush();
 asyncContext.complete();
 } catch(Exception e) {
 ...
 }
 }
 }
}

This code example implements an asynchronous serv-
let that is tied to the /chatApi path. A collection is created
in which the multiple asynchronous contexts are stored. It
contains servlet contexts that are waiting to receive a chat
message once it is available. So instead of tying up servlet
processing threads to wait until someone sends a chat mes-
sage, the AsyncContext is created and stored right away
to be processed at a later time, when a new chat message
becomes available.

Two REST APIs are used: doGet and doPost, which are
shown here as the first two methods in the AsyncChat
ServletApi class. doGet subscribes a user to receive a new
chat message, while doPost pushes a new chat message to
all waiting clients. Specifically, when the user hits a get URL,
an asynchronous context is created by calling

AsyncContext asyncContext =
 request.startAsync(request, response);

Following that, the asynchronous context is saved in a list
of contexts. This is a list representing clients that are waiting
to get the next chat message. At this point, the server thread

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

45

//web apps /

is done with processing this request, and it can be reused for
processing other requests.

When a user issues a doPost request posting a chat mes-
sage, the message is retrieved. This message is then written
to each of the asynchronous contexts, and the processing is
completed by calling

asyncContext.complete();

Because the servlet can be called by multiple threads, the
processing thread must be made thread-safe. In particular,
three scenarios should be addressed:
■■ Two post requests are processed simultaneously.
■■ A get request is received while a post request is being

processed.
■■ Two get requests are processed simultaneously.

When two posts occur simultaneously or a get and a post
occur simultaneously, all clients waiting for a message
should receive it (that is, messages are not dropped). This
can be achieved by synchronizing the copying context into a
local collection, and reinitializing the member context col-
lection so that it can accumulate new requests. Choosing to
synchronize the addition of an element to a collection in the
doGet method and synchronizing creation of a local copy of
a request collection in doPost takes care of both scenarios.

In the case of two get requests being processed simulta-
neously, both contexts need to be stored for future process-
ing. This can be achieved by having a thread-safe collection.
Alternatively, it is possible to synchronize the block of code
that adds an element, as shown in Listing 1.

Now, let’s examine the timeouts. If we were to set a non-
infinite timeout on the asynchronous context, and the time-
out is reached, clients receive the response “Server returned
HTTP response code: 500 for URL: http://localhost:8080/chat-
Api.” If the timeout is not set explicitly, the request inherits
the default timeout from the server settings. If the timeout

is set as 0 or negative, as shown in Listing 1, the server never
times out the request (although a web client can). To handle
timeouts on the server, you can extend AsyncListener and
implement custom code in the onTimeout callback event. For
instance, changing the server response to send status code
408 (the HTTP code for request timeout) along with the mes-
sage “Request timeout, no chat messages so far, please try
again” can be achieved by using the code in Listing 2.

Listing 2.
public class ChatAsyncListener
 implements AsyncListener {
 @Override
 public void onComplete(AsyncEvent event) { }

 @Override
 public void onTimeout(AsyncEvent event) {
 AsyncContext asyncContext
 = event.getAsyncContext();
 HttpServletResponse response
 = (HttpServletResponse)
 asyncContext.getResponse();		
 response.sendError(
 HttpServletResponse.SC_REQUEST_TIMEOUT,
 "Request timeout, no chat messages so far,"
 + " please try again.");

 asyncContext.complete();
 }

 @Override
 public void onError(AsyncEvent event) { }

 @Override
 public void onStartAsync(AsyncEvent event) { }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

46

//web apps /

Performance
In a usual chat application, all clients are listening for new
messages, while only a few of the clients are writing chat
messages. Hence, for this application, it makes sense to con-
centrate on what happens if we start increasing the num-
ber of clients. To test performance, I started with 64 clients
and steadily increased the number of clients to 2,048, while
measuring the time it takes them to get a new chat message.
Table 1 presents the results of this test, and Figure 2 shows
them graphically.

It is not essential for our analysis to know the specific time
it takes to perform a get operation, but it is important to
see the trends as the number of clients increases. The aver-
age response time does not change much with the number
of clients until we hit around 1,024 clients, and stays right
around 500 milliseconds—the time it takes for our producer
thread to produce a new message. As the number of clients
increases beyond 1,024, we see some degradation in perfor-
mance mainly because it takes time to process posting of the
chat message to the clients.

Another interesting point this test demonstrates is that the
average time it takes to consume a message is slightly below
the rate at which messages are produced. It indicates that

processing a message and resubscribing does take time, and
there is a slight chance for the client to miss a new message.

To enhance this setup to work in an environment where
missing messages is not a viable option, a client can pass a
token to the server indicating the last message it has seen. If
the client has already received the latest message available,
the server puts the thread on asynchronous wait for a new
message. Otherwise, the server responds with all messages
produced since the last message the client received.

Conclusion
In this article, I’ve explained what long polling is and demon-
strated how simple it is to use. With the universal support it
enjoys, long polling can be used anytime a long-lived connec-
tion between client and server is needed. </article>

Henry Naftulin has been designing Java EE distributed systems
for 15 years. He is currently leading development of proprietary
short-side preorder services for one of the largest financial compa-
nies in the United States.

Figure 2. Response time as the number of clients increases

Table 1. Results of three runs sending messages to multiple clients (time in ms)

NUMBER OF C L IEN T S

64 128 256 512 1,024 2,048

RUN #1 RESPONSE 483.28 492.63 521.00 485.24 504.31 616.75

STDEV 1.39 3.31 26.01 10.55 15.57 37.35

RUN #2 RESPONSE 499.80 490.04 494.45 501.02 546.78 575.85

STDEV 0.98 3.15 3.87 19.84 26.85 35.03

RUN #3 RESPONSE 469.90 495.57 489.43 485.57 54 4.37 659.75

STDEV 0.69 1.53 6.79 7.87 36.46 29.13

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

47

//web apps /

In Part 1 of this article, I introduced WebSockets. I observed
that the base WebSocket protocol gives us two native for-

mats to work with: text and binary. This works well for very
basic applications that exchange only simple information
between client and server. For example, in the Clock appli-
cation in that article, the only data that is exchanged dur-
ing the WebSocket messaging interaction is the formatted
time string broadcast from the server endpoint and the stop
string sent by the client to end the updates. But as soon as
an application has anything more complicated to send or
receive over a WebSocket connection, it will find itself seek-
ing a structure into which to put the information. As Java
developers, we are used to dealing with application data in
the form of objects: either from classes from the standard
Java APIs or from Java classes that we create ourselves. This
means that if you stick with the lowest-level messaging
facilities of the Java WebSocket API and want to program
using objects that are not strings or byte arrays for your
messages, you need to write code that converts your objects
into either strings or byte arrays and vice versa. Let’s see
how that’s done.

Fortunately, the Java WebSocket API gives us some support
in this task of encoding objects to WebSocket messages and
decoding WebSocket messages into objects.

First, the Java WebSocket API attempts to convert incom-
ing messages into any Java primitive type (or its class equiv-

alent) that you request. This means you can declare a mes-
sage handling method of the form

@OnMessage
public void handleCounter(int newvalue) {...}

or

@OnMessage
public void handleBoolean(Boolean b) {...}

and the Java WebSocket implementation attempts to convert
any incoming message into the Java primitive parameter type
you declare.

Equivalently, the RemoteEndpoint.Basic methods for
sending include a general-purpose

public void sendObject(Object message)
 throws IOException, EncodeException

method, into which you can pass any Java primitive or its
class equivalent, and the Java WebSocket implementation
converts the value into the string equivalent for you.

This only gets you so far. Often, you want higher-level,
highly structured objects to represent the messages in your
application. In order to handle custom objects in your mes-
sage handling methods, you must provide, along with the

Using WebSockets’ long-lasting connections to build a simple chat app

Pushing Data in Both Directions
with WebSockets

DANNY COWARD

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015?pg=59#pg59

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

48

//web apps /

endpoint, a WebSocket Decoder implementation, which
the runtime uses to convert the incoming message into an
instance of the custom object type. To handle custom
objects in your send methods, you must provide a Web-
Socket Encoder implementation that the runtime will
use to convert instances of the custom object into a native
WebSocket message. We can summarize this kind of scheme
in Figure 1.

Figure 1 shows endpoints exchanging strings with the cli-
ent at the top, and other endpoints using an encoder and a
decoder for converting Foo objects into WebSocket text mes-
sages and vice versa.

There is a family of javax.websocket.Decoder and
javax.websocket.Encoder interfaces in the Java Web-
Socket API to choose from, depending on what kind of
conversion you wish to make. For example, to implement
a Decoder that converts text messages into instances of a
custom developer class called Foo, you would implement the
interface Decoder.Text<T> using Foo as the generic type,
which would require you to implement this method:

public void sendObject(Object message)
 throwsIOException, EncodeException

This is the workhorse method of the decoder and would
be called each time a new text message came in to produce
an instance of the Foo class. The runtime would then be
able to pass this class into the message handling method of
your endpoint.

There are sibling Decoder classes for decoding binary
WebSocket messages and WebSocket messages that arrive in
the form of a blocking I/O stream (which is also supported).

To implement an Encoder that converts instances of a
custom developer class Foo into a WebSocket text message,
you would implement the Encoder.Text<T> interface using
Foo as the generic type. This would require you to implement
this method:

public String encode(Foo foo)
 throws EncodeException

This does the work of converting Foo instances into strings,
which are needed by the Java WebSocket runtime if you call
the RemoteEndpoint’s sendObject() method (discussed
previously), passing in an instance of the class Foo. Like
Decoders, there are Encoder siblings for converting custom
objects into binary messages and for writing custom objects to
blocking I/O streams in order to send the message.

This scheme is easy to wire into an endpoint if you want
to use it, as we saw in the definitions for @ClientEndpoint
and @ServerEndpoint. You can simply list the decoder and
encoder implementations you want the endpoint to use in the
decoders() and encoders() attributes, respectively.

If you configure your own encoders or decoders for the
Java primitive types, they will override the runtime’s
default encoders or decoders for those types, just as you
would expect.

Figure 1. Encoders and decoders

String

String

String

String

String

String

Endpoint

Web Container

RemoteEndpoint

Foo EndpointRemoteEndpoint

FooDecoder Foo

FooEncoder

Client

Client

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

49

//web apps /

Message Processing Modes
So far, we have only discussed sending and receiving Web-
Socket messages one entire message at a time. Although
many applications retain this simple model for message
processing because they define only small messages in their
application protocol, some applications will deal with large
WebSocket messages, perhaps transmitting photographs or
large documents. The Java WebSocket API provides several
processing modes suited to handling larger messages grace-
fully and efficiently.
Receiving large messages. The Java WebSocket API has two
additional modes for receiving messages that are suited to
situations when you know the message will be large. The first
mode exposes the endpoint to a blocking I/O API that the
endpoint can use to consume the message, either java
.io.Reader for text messages or java.io.InputStream
for binary messages. To use this mode, instead of using either
a String or ByteBuffer parameter in your message han-
dling method, you would use a Reader or InputStream.
For example,

@OnMessage
public void handleMessageAsStream(
 InputStream messageStream,
 Session session) {
 // read from the messageStream
 // until you have consumed the
 // whole binary message
}

The second mode allows for a kind of elementary chinking
API, where the WebSocket message is passed to the message
handler method in small pieces together with a boolean flag
telling you whether there are more pieces yet to come in order
to complete the message. Of course, the message pieces arrive
in order, and there is no interleaving of other messages. To

use this mode, the message handler method adds a boolean
parameter. For example,

@OnMessage
public void handleMessageInChunks(
 String chunk, boolean isLast) {
 // reconstitute the message
 // from the chunks as they arrive
}

In this mode, the size of the chunks depends on several
factors relating to the peer that sends the message and the
configuration of the Java WebSocket runtime. All you know
is that you will receive the whole message in a number
of pieces.
Modes for sending messages. As you might expect, given the
symmetry of the WebSocket protocol, there are equiva-
lent modes for sending messages in the Java WebSocket API
suited to large message sizes. In addition to sending a mes-
sage all in one piece, as we have seen so far, you can send
messages to a blocking I/O stream, either java.io.Writer
or java.io.OutputStream depending on whether the mes-
sage is text or binary. These are, of course, additional meth-
ods on the RemoteEndpoint.Basic interface that you obtain
from the Session object:

public Writer getSendWriter() throws IOException

and

public OutputStream getSendStream()
 throws IOException

The second mode is the chunking mode, but in reverse,
for sending rather than receiving. Again, an endpoint can
send messages in this mode by calling either of the following
methods of RemoteEndpoint.Basic,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

50

//web apps /

public void sendText(
 String partialTextMessage, boolean isLast)
 throws IOException

or

public void sentBinary(
 ByteBuffer partialBinaryMessage,
 boolean isLast)
 throws IOException

depending on the type of message you wish to send.
Asynchronous sending of messages. Receipt of WebSocket
messages is always asynchronous. An endpoint typically
has no idea when messages are going to arrive; they just
appear whenever the peer chooses. Now, all the methods
of the RemoteEndpoint.Basic interface for sending mes-
sages (most of which we have seen) are synchronous sends.
In simple terms, what this means is that the send() method
calls always block until the message has been transmit-
ted. This is fine for small messages, but if the message
is large, a WebSocket may well have better things to do
than wait for it to send, such as messaging someone else,
repainting a user interface, or focusing more resources on
processing incoming messages. For such endpoints, the
RemoteEndpoint.Async, obtainable from the Session
object, as is the RemoteEndpoint.Basic, contains send()
methods that take a whole message as a parameter (in vari-
ous forms). It returns immediately, and before the message
passed in is actually sent. For example, when sending a large
text message, you might want to use the

public void sendText(
 String textMessage, SendHandler handler)

method. The method returns immediately, and the Send
Handler that you pass in to this method receives a call-

back when the message is actually transmitted. In this way,
you know the message was sent, but you don’t have to wait
around until it does so. Or you may want to check in periodi-
cally on the progress of an asynchronous message send. For
example, you might choose the method

public Future<Void> sendText(
 String textMessage)

in which case the method returns immediately and before the
message is transmitted. You can query the Future object you
obtain in return for the status of the message sent, and even
cancel transmission if you change your mind.

There are binary message equivalents for these methods, as
you might expect.

Before we leave the topic of sending messages in the Java
WebSocket API, it’s worth pointing out that the WebSocket
protocol has no built-in notion of delivery guarantee. In
other words, when you send a message, you don’t know for
sure whether it was received by the client. If you receive an
error in your error handler methods, that’s usually a sure
sign that the message was not delivered properly. But if there
is no error, the message still may not have been properly
delivered. It is possible to build interactions yourself in Java
WebSockets, wherein for important messages you have the
peer send you an acknowledgement of receipt. But, unlike
other messaging protocols, such as JMS, there is no inherent
guarantee of delivery.

Path Mapping
In the Clock example, there was one endpoint and it was
mapped to a single relative URI in the URI space of the web
application. The client that connected to this endpoint did
so by choosing a URL that was exactly that of the URI to the
web application, plus the URI of the endpoint. This is an
example of exact path mapping in the Java WebSocket API.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

51

//web apps /

In general, an endpoint is accessible at

<ws or wss>://<hostname>:<port>/
<web-app-context-path>/<websocket-path>?
<query-string>

where <websocket-path> is the value attribute of the
@ServerEndpoint annotation and query-string is an
optional query string.

When the <websocket-path> is a URI, as it is in the
ClockServer endpoint, the only request URI that will con-
nect to the endpoint is the one that matches it exactly.

The Java WebSocket API also allows server endpoints to be
mapped to level 1 URI templates. URI templates are a fancy
way of saying that one or more segments of the URI can be
substituted with variables. For example,

/airlines/{service-class}

is a URI template with a single variable called service-class.
The Java WebSocket API allows incoming request URIs to

match an endpoint using a URI template path mapping if and
only if the request URI is a valid expansion of the URI tem-
plate. For example,

/airlines/coach
/airlines/first
/airlines/business

are all valid expansions of the URI template

/airlines/{service-class}

with variable service-class equal to coach, first, and
business, respectively.

URI templates can be very useful in a WebSocket appli-
cation, because the template variable values are available

within the endpoint that matches the request URI. In any of
the lifecycle methods of a server endpoint, you can add as
many String parameters annotated with the @PathParam
annotation to obtain the value of the variable path segments
in the match. Continuing this example, suppose we had the
server endpoint shown in Listing 1.

Listing 1. A Booking notifier endpoint
@ServerEndpoint("/air1ines/{service-class}")
public class MyBookingNotifier {

@OnOpen
public void initializeUpdates(Session session,
 @PathParam("service-class") String sClass) {
 if {"first".equals(sClass)) {
 // open champagne
 } else if ("business".equals(sC1ass)) {
 // heated nuts
 } else {
 // don't bang your head on our aircraft
 }
 }
...
}

This would yield different levels of service, depending on
which request URI a client connects with.
Accessing path information at runtime. An endpoint has
full access to all of its path information at runtime.
First, it can always obtain the path under which the
WebSocket implementation has published it. Using the
ServerEndpointConfig.getPath() call for the endpoint
holds this information, which you can easily access wherever
you can get hold of the ServerEndpointConfig instance,
such as we see in Listing 2.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

52

//web apps /

Listing 2. An endpoint accessing its own path mapping
@ServerEndpoint("/travel/hotels/{stars}")
public class HotelBookingService {
 public void handleConnection{
 Session s, EndpointConfig config) {
 String myPath =
 ((ServerEndpointConfig) config).getPath();
 // myPath is "/travel/hotels/{stars}"
 ...
 }
}

This approach will work equally well for exact URI-
mapped endpoints.

The second piece of information you may wish to access at
runtime from within an endpoint is the URI with which the
client to your endpoint connected. This information is avail-
able in a variety of forms, as we shall see later, but the work-
horse method that contains all the information is the

Session.getRequestURI()

method. This gives you the URI path relative to the web
server root of the WebSocket implementation. Notice that
this includes the context root of the web application that
the WebSocket is part of. So, in our hotel booking exam-
ple, if it is deployed in a web application with context root
/customer/services and a client has connected to the
HotelBookingService endpoint with the URI

ws://fun.org/customer/services/
 travel/hotels/3

then the request URI the endpoint receives by calling
getRequestURI() is

/customer/services/travel/hotels/3

Two more methods on the Session object parse out fur-
ther information from this request URI when the request URI
includes a query string. So let’s take a look at query strings.
Query strings and request parameters. As we saw earlier, fol-
lowing the URI path to a WebSocket endpoint is the optional
query string

<ws or wss>://<host:name>:<port:>/
 <web-app-context-path>/<websocket-path>?
 <query-string>

Query strings in URIs originally became popular in com-
mon gateway interface (CGI) applications. The path portion
of a URI locates the CGI program (often /cgi-bin), and the
query string appended after the URI path supplies a list of
parameters to the CGI program to qualify the request. The
query string is also commonly used when posting data using
an HTML form. For example, in a web application, in the
HTML code

<form
 name="input"
 action="form-processor" method="get">
 Your Username: <input type="text" name="user">
 <input type="submit"
value="Submit">
</form>

clicking the Submit button produces an HTTP request to
the URI

/form-processor?user=Jared

relative to the page holding the HTML code and where
the input field contains the text Jared. Depending on the
nature of the web resource located at the URI path
/form-processor, the query string user=Jared can be
used to determine what kind of response should be made.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

53

//web apps /

For example, if the resource at form-processor is a Java
servlet, the Java servlet can retrieve the query string from the
HttpServletRequest using the getQueryString() API call.

In a similar spirit, query strings can be used in the URIs
that are employed to connect to WebSocket endpoints cre-
ated with the Java WebSocket API. The Java WebSocket API
does not use a query string sent as part of the request URI
of an opening handshake request to determine the endpoint
to which it might match. In other words, whether or not a
request URI contains a query string makes no difference
to whether it matches a server endpoint’s published path.
Additionally, query strings are ignored in paths used to pub-
lish endpoints.

Just as CGI programs did and other kinds of web components
do, WebSocket endpoints can use the query string to further
configure a connection that a client is making. Because the
WebSocket implementation essentially ignores the value of
the query string on an incoming request, any logic that uses
the value of the query string is purely inside the WebSocket
component. The main methods that you can use to retrieve
the value of the query string are all on the Session object

public String getQueryString()

which returns the whole query string (everything after the ?
character) and

public Map<String,List<String>>
 getRequest:ParameterMap()

which gives you a data structure with all the request param-
eters parsed from the query string. You’ll notice that the
values of the map are lists of strings; this is because a
query string may have two parameters of the same name
but different values. For example, you might connect to the
HotelBookingService endpoint using the URI

ws://fun.org/customer/
 services/travel/hotels/4?
 showpics=thumbnails&
 description=short

In this case, the query string is showpics=thumbnails&
description=short, and to obtain the request param-
eters from the endpoint, you might do something like what’s
shown in Listing 3.

Listing 3. Accessing request parameters
@ServerEndpoint("/travel/hotels/{stars}")
public class HotelBookingService2 {

 public void handleConnection(
 Session session, EndpointConfig config) {
 String pictureType =
 session.getRequestParameterMap()
 .get("showpics").get(0);
 String textMode =
 session.getRequestParameterMap()
 .get("description").get(0);
 ...
 }
 ...
}

where the values of pictureType and textMode would be
thumbnails and short, respectively.

You can also get the query string from the request URI. In
the Java WebSocket API, the Session.getRequestURI call
always includes both the URI path and the query string.

Deployment of Server Endpoints
Deployment of Java WebSocket endpoints on the Java EE
web container follows the rule that easy things are easy.
When you package a Java class that has been annotated
with @ServerEndpoint into a WAR file, the Java WebSocket

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

54

//web apps /

implementation scans the WAR file and finds all such classes
and deploys them. This means there is nothing special you
have to do in order to get your server endpoints deployed
except package them in the WAR file. However, you may
wish to more tightly control which of a collection of server
endpoints gets deployed in a WAR file. In this case, you may
provide an implementation of the Java WebSocket API inter-
face javax.websocket.ServerApplicationConfig, which
allows you to filter which of the endpoints get deployed.

The Chat Application
A good way to test a push technology is to build an application
that has frequent, asynchronous updates to make to a num-
ber of interested clients. Such is the case with a Chat applica-
tion. Let’s take a look in some detail at how to apply what we
have learned about the Java WebSocket API to build a simple
chat application.

Figure 2 shows the main window of the Chat application,
which prompts for a username when you sign in.

Several people can be chatting all at once, typing their
messages in the text field at the bottom and clicking the Send

button. You can see the active chatters on the right side and
the shared transcript recording everyone’s messages in the
middle and left. In Figure 3, there is an uncomfortable triad of
people chatting.

In Figure 4, we can see that one of the chatters left rather
suddenly, and the other has left slightly more gracefully,
leaving just one chatter in the room.

Figure 2. Logging in to chat Figure 3. Chat in full flow

Figure 4. Leaving chat

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

55

//web apps /

Before we look at the code in detail, let’s get the big pic-
ture of how this application is built. The web page uses the
JavaScript WebSocket client to send and receive all the chat
messages. There is a single ChatServer Java WebSocket end-
point on the web server, which is handling all chat messages
from multiple clients, keeping track of those clients that are
actively chatting, maintaining the transcript, and broadcast-
ing updates to all connected clients whenever someone enters
or leaves the chat room and whenever any one of them sends
a message to the group. The application uses custom objects
with WebSocket Encoders and Decoders to model all the
chat messages.

Let’s look at the ChatServer endpoint in Listing 4. [Due to
its length, the listing should be downloaded from this issue’s
download area. —Ed.]

There is a lot to notice in this code. First, notice that
this is a server endpoint that is mapped to the relative URI
/chat-server. The endpoint uses an encoder and a decoder
class, ChatEncoder and ChatDecoder, respectively.

The best way to look at Java WebSocket endpoints for the
first time is to look at the lifecycle methods: These, as you
know, are the methods annotated by @OnOpen, @OnMessage,
@OnError, and @OnClose. We can see by looking at the
ChatServer class in this way that the first thing the
ChatServer WebSocket does when a new client connects is
to set up instance variables that reference the chat transcript,
the session, and the EndpointConfig. Remember that there
is a new instance of the endpoint for each client that con-
nects. So each chatter in the chat room will have a unique
chat server instance associated with it. There is always a
single EndpointConfig per logical WebSocket endpoint, so
the endpointConfig instance variable on each instance of
the ChatServer points to the single shared instance of the
EndpointConfig class. This instance is a singleton, and it
holds a user map that can hold an arbitrary application state.
Thus, it is a good place to hold global state in an application.

There is always a unique session object per client connection,
so each ChatServer instance points to its own Session
instance representing the client to which the instance is
associated by following the code to the Transcript class, as
shown in Listing 5.

Listing 5. The Transcript class
import java.util.ArrayList;
import java.util.List;
import javax.websocket.*;

public class Transcript {
 private List<String> messages =
 new ArrayList<>();
 private List<String> usernames =
 new ArrayList<>();
 private int maxLines;
 private static String
 TRANSCRIPT_ATTRIBUTE_NAME =
 "CHAT_TRANSCRIPT_AN";

 public static Transcript
 getTranscript(EndpointConfig ec) {
 if (!ec.getUserProperties().
 containsKey(TRANSCRIPT_ATTRIBUTE_NAME)) {
 ec.getUserProperties()
 .put(TRANSCRIPT_ATTRIBUTE_NAME,
 new Transcript(20));
 return (Transcript) c.getUserProperties()
 .get(TRANSCRIPT_ATTRIBUTE_NAME);
 }

 Transcript(int maxLines) {
 this.maxLines = maxLines;
 }

 public String getLastUsername() {
 return usernames.get(usernames.size() -1);
 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

56

//web apps /

 public String getLastMessage() {
 return messages.get(messages.size() -1);
 }
 public void addEntry(
 string username, String message) {
 if (usernames.size() > maxLines) {
 usernames.remove(0);
 messages.remove(0);
 }

 usernames.add(username);
 messages.add(message);
 }
}

We can see that there is a single transcript instance
per EndpointConfig. In other words, there is a single
Transcript instance and it is shared across all ChatServer
instances. This is good because we need the transcript to
show the group chat messages to all clients.

The most important method on the ChatServer is the
message handling method, annotated with @OnMessage. You
can see from its signature that it deals with ChatMessage
objects rather than text or binary WebSocket messages,
thanks to the ChatDecoder that it uses. The ChatDecoder
it uses has already decoded the message into one of the sub-
classes of ChatMessage. In the interest of brevity, rather
than listing all the ChatMessage subclasses, Table 1 is a sum-

mary of the different ChatMessage subclasses and the func-
tion of each.

Now we can easily see that the ChatServer’s message
handling method, handleChatMessage(), which is called
by the client every time a new chat-related action occurs, is
designed to handle situations when a new user signs in, when
a user posts a new chat message to the board, and when a
user signs out.

Let’s follow the code path when a ChatServer is notified
that the user has posted a new chat message. This leads us
from the handleChatMessage() method to the process
ChatUpdate() method, which calls addMessage(), adding
the new chat message to the shared transcript. Then it calls
broadcastTranscriptUpdate(), as shown in Listing 6.

Listing 6. Broadcasting a new chat message
private void broadcastTranscriptUpdate() {
 for (Session nextsession :
 session.getOpenSessions()) {
 ChatUpdateMessage cdm =
 new ChatUpdateMessage(
 this.transcript.getLastUsername(),
 this.transcript.getLastMessage());

 try{
 nextsession.getBasicRemote(}.sendObject(cdm};
 } catch (IOException | EncodeException ex) {
 System.out.println(
 "Error updating a client : " +
 ex.getMessage());
 }
 }
}

This method uses the very useful API call Session
.getOpenSessions(), allowing one endpoint instance to
gain a handle on all the open connections to the logical end-
point. In this case, the method uses that list of all the open Table 1. The ChatMessage subclasses

C H AT ME S S AGE S UB C L A S S P URP O S E

ChatUpdateMessage MESSAGE HOLDING A USERNAME AND A CHAT MESSAGE THAT USER SENT

NewUserMessage MESSAGE HOLDING THE NAME OF A NEW USER SIGNING ON

UserListUpdateMessage MESSAGE HOLDING A LIST OF THE NAMES OF THE CURRENT ACTIVE CHAT TERS

UserSignoffMessage MESSAGE HOLDING THE NAME OF A USER WHO HAS SIGNED OFF

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

57

//web apps /

connections to broadcast the
new chat message out to all the
clients so that they can update
their user interfaces with the
latest chat message. Notice that
the message that is sent is in
the form of a ChatMessage—
here, the ChatUpdateMessage.
The ChatEncoder takes
care of marshaling the
ChatUpdateMessage
instance into a text message that is actually the one sent
back to the client with the news of the new chat message
contained within.

Because we did not look at the ChatDecoder when we
were looking at incoming messages, let’s pause to look at the
ChatEncoder class, as shown in Listing 7.

Listing 7. The ChatEncoder class
import java.util.Iterator;
import javax.websocket.EncodeException;
import javax.websocket.Encoder;
import javax.websocket.EndpointConfig;

public class ChatEncoder implements
 Encoder.Text<ChatMessage> {
 public static final String SEPARATOR = ":";

 @Override
 public void init(EndpointConfig config) {}
 @Override
 public void destroy() {}

 @Override
 public String encode(ChatMessage cm)
 throws EncodeException {
 if (cm instanceof StructuredMessage) {
 String dataString = "";

 for (Iterator itr =
 ((StructuredMessage) cm)
 .getList().iterator();
 itr.hasNext();)
 {
 dataString =
 dataString + SEPARATDR +
 itr.next();
 }
 return cm.getType() + dataString;
 } else if (cm instanceof BasicMessage) {
 return cm.getType() +
 ((BasicMessage) cm).getData();
 } else {
 throw new EncodeException(cm,
 "Cannot encode messages of type: " +
 cm.getC1ass());
 }
 }
}

You can see that the ChatEncoder class is required to
implement the Encoder lifecycle methods init() and
destroy(). Although this encoder does nothing with these
callbacks from the container, other encoders may choose to
initialize and destroy expensive resources in these lifecycle
methods. The encode() method is the meat of the class and
takes the message instance and turns it into a string, ready
for transmission back to the client.

Returning now to the ChatServer class, we see from
the handleChatMessage()method that this endpoint has
a graceful way of dealing with clients that sign off in the
proper way: by sending a UserSignoffMessage prior to
closing the connection. It also has a graceful way of dealing
with clients who simply close the connection unilaterally,
perhaps by closing the browser or navigating away from the
page. The @OnClose annotated endChatChannel() method
broadcasts a message to all connected clients informing them

The encode() method is
the meat of the class
and turns the message
instance into a string,
ready for transmission
back to the client.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

58

//web apps /

when someone leaves the chatroom without saying goodbye.
Looking back at the screenshots, we can now see the differ-
ence between the manner in which Jess and Rob left the room.

Conclusion
In this two-part article, we have learned how to create a Java
WebSocket endpoint. We have explored the basic concepts of
the WebSocket protocol and what kinds of situations demand
their true server push nature. We have looked at the lifecycle
of a Java WebSocket endpoint, examined the main classes of
the Java WebSocket API, and looked at encoding and decoding
techniques, including the variety of messaging modes sup-
ported in the Java WebSocket API. We looked at how server
endpoints are mapped to the URI space of a web application
and how client requests are matched to endpoints therein.
We concluded with a look at a Chat application that exercises
many of the features of the Java WebSocket API. Armed with
this knowledge, now you can easily build applications with
long-lived connections. </article>

This article was adapted from the book Java EE 7: The Big Picture
with kind permission from the publisher, Oracle Press.

Danny Coward is the principal software engineer at Liquid
Robotics. Earlier, he was a member of the Java development team
at Oracle (and previously at Sun Microsystems), where he worked
extensively on WebSockets, among other responsibilities.

Oracle’s Java WebSockets tutorial
Long polling, a WebSocket alternative

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/HomeWebsocket/WebsocketHome.html
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

59

//path to java 9 /

Until now—that is, up through Java 8—the language’s
model for controlling access to code has been relatively

straightforward:
■■ Classes are arranged into packages. Packages are globally

visible and open for extension (with the exception of pack-
ages that start with java or javax). Packages are designed for
the logical organization of code and nothing more.

■■ The unit of delivery for code is the JAR file. Regular (unpro-
tected) packages can span multiple JAR files.

■■ Classes and methods can restrict access. For example, they
can enforce that they are accessible only to instances of
the same type or to other code in the same package. This is
expressed by the familiar Java keywords for access control.

This design has the advantage of being simple to understand
and to reason about. However, it does lead to several issues
related to access control. Of these, the most important prob-
lem is this: non-JDK libraries are powerless to prevent client
code from creating additional classes in the libraries’ pack-
ages. Creating such classes gives access to all of the protected
and package-access classes (and methods) that are defined in
the package.

This is sometimes referred to as the “shotgun privacy”
problem, after this famous observation about the Perl pro-
gramming language by its designer, Larry Wall: “Perl doesn’t
have an infatuation with enforced privacy. It would prefer
that you stayed out of its living room because you weren’t
invited, not because it has a shotgun.”

For Java, however, shotgun privacy represents an important
issue. As the language and environment currently stand, there’s

An Early Look at Java 9 Modules
Preparing for modularity, a significant change that is the cornerstone of the next major release of Java

no way to control access across an entire package. Another way
of saying this is that Java libraries want to be able to define a
public API and know with certainty that clients of that API can’t
subvert it or directly couple to the package internals.

Many enterprise applications would very much like to
enforce a tight level of access control, where the only
accesses are through a known and enforced API. However,
this level of control of APIs is not completely possible in
Java 8 and below. This was one of the principal reasons that
Oracle (and previously Sun) wanted to develop a set of tech-
nologies capable of implementing this level of safety. As
became clear, though, work on this problem began to allow
the possibility of solving other problems.

The resulting core goals of the upcoming JDK 9 modules
system have become the following over time:
■■ Extend access control so public APIs can be fully enforced

by introducing a concept of “sealing” access within a
deployment unit.

■■ Facilitate modular deployment of code at a scale larger than
a single package.

■■ Modularize the JDK itself so that the platform can improve
JVM startup times, reduce resource consumption, remove
packages that shouldn’t be in the core, and remove or hide
internal classes to reduce the attack surface of the platform.

Oracle has sponsored a project within OpenJDK, called
Project Jigsaw, whose mission is to deliver modularity for
the Java environment. As the release date for JDK 9 starts to
approach, code from Jigsaw has begun to be migrated into
the mainline OpenJDK repositories. This means that at the

BEN EVANS

PHOTOGRAPH BY JOHN BLYTHE

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

60

//path to java 9 /

time of this writing (late 2015), there are different binaries at
various levels of completeness that support modules.
■■ The first Java 9 early access (EA) builds from Oracle that

contain modules are available. However, the module func-
tionality that is contained in these binaries is limited.

■■ To supplement the mainline JDK 9 builds and provide even
earlier access to modular functionality, the Jigsaw project is
also making binaries available.

For the rest of this article, the examples and discussion cen-
ter on the Jigsaw binaries, because they are more complete
than the JDK 9 mainline.

The Jigsaw Pieces
Project Jigsaw identified several subgoals in the course of
a roadmap leading to full modularity. These were defined
within the Java Enhancement Process (JEP) and included the
following:
■■ Modularize the layout of the source code in the JDK (JEP 201).
■■ Modularize the structure of the binary runtime images

(JEP 220).
■■ Disentangle the complex implementation dependencies

between JDK packages.
This last goal was one of the most labor-intensive, but it
was also necessary in order to make modules as indepen-
dent from each other as possible. In turn, this goal allows the
maximum possible flexibility for modules to be loaded and
linked separately.

As an example of why this is needed, consider the
java.util.Properties package, which contains a require-
ment to parse XML. This requirement greatly increased the
footprint for any code that depended on Properties, because
it pulled in Java’s full XML libraries. To fix this, a small XML
parser based on the original reference implementation (JSR
280) was added to remove the heavier dependencies.

Another example is the RMI-IIOP transport, which was
separated out from the management module, so that the

remote management module (which uses JMX) no longer
requires CORBA to be present.

One other minor change is also worth mentioning because
it is rather unusual in Java’s history. A small number of meth-
ods in java.util.logging.LogManager were removed
from the public API, because they caused undesirable linkages
between some modules and would have introduced consider-
able bloat.

This is one of the very few times that methods have been
actually removed from the public API of the JDK (after all,
even the highly dangerous Thread.stop is still present,
despite having been deprecated since Java 1.1). Removing
methods is a very rare event and shows the importance of a
good modularity solution to the Java team.

A First Look at Modules
Let’s have a look at how things have changed in the Java 9
(Jigsaw) EA release:

$ cd $JAVA_HOME
$ pwd
/java9/Contents/Home
$ ls -lh
total 42640
-r--r--r-- 1 10 143 3.2K COPYRIGHT
-r--r--r-- 1 10 143 40B LICENSE
-r--r--r-- 1 10 143 158B README.html
-r--r--r-- 1 10 143 174K THIRDPARTYLIC…txt
drwxr-xr-x 46 10 143 1.5K bin
drwxr-xr-x 7 10 143 238B conf
drwxr-xr-x 9 10 143 306B db
drwxr-xr-x 12 10 143 408B demo
drwxr-xr-x 11 10 143 374B include
-rw-r--r-- 1 10 143 127K jrt-fs.jar
drwxr-xr-x 84 10 143 2.8K lib
-rw-r--r-- 1 10 143 549B release
drwxr-xr-x 15 10 143 510B sample
-rw-r--r-- 1 10 143 21M src.zip

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/articles/java/ea-jsp-142245.html
https://jdk9.java.net/jigsaw/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

61

//path to java 9 /

[In order to fit, some minor file information has been
removed from this listing. —Ed.]

There are a few things to see here, but let’s start with the
big news—the jre directory is gone. There is no more rt.jar
to contain the whole of the JRE. Instead, the JRE is stored in
the new jimage format. This is a container format that man-
ages classes and resources needed by the modularized runtime.

Rather than traditional zip-based compression, jimage files
are indexed to support fast lookup of classes and resources.
The content region of a jimage contains all classes and
resources for the image and is managed in terms of locations.

Resources can be located in the index by using a module
path as a search key. The path format is /<module-name>/
<package>/<base-name>.<extension>. Paths are ver-
sioned, and the current path is “9.0”—this reflects the cur-
rent release of the JVM.

The main jimage file is found in lib/modules and is called
bootmodules.jimage. However, in addition to the jimage
files there are also .jmod files—Java modules. These files are
being used as a test bed for other module features outside of
the efforts in .jimage to speed up access. As it stands now,
.jmod files are still implemented as zip files, but the format
will almost certainly change in future. The fact that there are
two packaging formats shows how much of a moving target
Java 9 modules really are at present.

The java.base.jmod file contains the minimal viable col-
lection of classes for any nontrivial Java program to run. It
contains the following packages (or subsets of them):

java.io
java.lang
java.math
java.net
java.nio
java.security
java.text
java.time

java.util
javax.crypto
javax.net
javax.security

The rest of the module consists of the implementation
classes to support the base module. Of course, the real intent
of Project Jigsaw is that Java developers also make use of the
mechanism to produce modular libraries and applications of
their own. Let’s take a quick look into this world by consider-
ing a simple “Hello World” for modules.
A simple Java module. To create a very simple Java module, we
need to write two parts, the first of which is a simple core
class such as this:

package com.jdk9ex;

public class Main {
 public static void main(String[] args) {
 System.out.println("Hello Modules!");
 }
}

In Java 8 and earlier, this code could be compiled and run
without further ceremony. However, to run correctly in mod-
ular Java, this needs to be supplemented with a new piece of
metadata: a module-info.java file.

The intention is that this file will become a fairly sophis-
ticated metadata provider and handle versioning and other
important features of modules, but the currently shipping
version in Jigsaw EA is quite primitive and is only intended
to allow keen developers to start investigating module
technology.

The simplest module looks like this (assuming our module
for JDK 9 examples is named com.jdk9ex):

module com.jdk9ex { }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

62

//path to java 9 /

Eagle-eyed developers will note that this means that
module is a new keyword in Java 9. For this to compile, the
directory structure needs to be laid out according to the new
modular source rules. For our module com.jdk9ex, this struc-
ture is the following:

|____src
| |____com.jdk9ex
| | |____com
| | | |____jdk9ex
| | | | |____Main.java
| | |____module-info.java

Note that the module name is independent of the normal
conventions for Java packages that live inside the module. To
compile this modular code, we need to tell javac that we’re
running a module-aware build:

$ javac -d modules/com.jdk9ex \
 src/com.jdk9ex/module-info.java \
 src/com.jdk9ex/com/jdk9ex/*

This produces a set of modular class files, but not a jimage.
To execute this code, we also need to explicitly inform the
JVM that modules are needed:

$ java -modulepath modules -m \
 com.jdk9ex/com.jdk9ex.Main
Hello Modules!

The basic “Hello World” example is an established pat-
tern for programmers, and experimenting with the modules
system and seeing how it works is highly recommended for
developers who want to fully understand the current state of
modularity for Java 9.
What could go wrong? Inevitably, some aspects of any new
technology will cause problems for early adopters, so let’s
look at a couple of basic failure cases. In particular, if you fail

to build or invoke modular Java correctly, you might see a new
sort of exception:

$ java -modulepath modules -m com.jdk9ex.Main
Error occurred during initialization of VM
java.lang.module.ResolutionException:
 Module com.jdk9ex.Main not found at
java.lang.module.Resolver.fail
 (java.base@9.0/Resolver.java:880)at
java.lang.module.Resolver.resolve
 (java.base@9.0/Resolver.java:193)at
java.lang.module.Resolver.resolve
 (java.base@9.0/Resolver.java:173)at
java.lang.module.Configuration.resolve
 (java.base@9.0/Configuration.java:229)at
jdk.internal.module.ModuleBootstrap.boot
 (java.base@9.0/ModuleBootstrap.java:174)at
java.lang.System.initPhase2
 (java.base@9.0/System.java:1242)

[Some lines have been wrapped to fit. —Ed.]
This single stack trace shows that we have the following

new items:
■■ Packages, including java.lang.module
■■ Exceptions, including ResolutionException
■■ Locations for code, such as
java.base@9.0/ModuleBootstrap.java

■■ Entry points for startup, such as
java.lang.System::initPhase2

From this we can also see that the new modular paths used
for jimages are now directly present in stack traces.

Alternatively, we might try to access an internal imple-
mentation class. The code shown below compiles and runs on
Java 8:

import sun.invoke.util.BytecodeName;

public class InternalsCheck {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

63

//path to java 9 /

 public static void main(String[] args) {
 String bName =
 BytecodeName
 .toBytecodeName("java.lang.Object");
 System.out.println(bName);
 }
}

As expected, it produces the internal name for
java.lang.Object. However, with modules, access to the
implementation class is restricted, and this code will no
longer even compile:

$ javac -d modules/com.jdk9ex \
 src/com.jdk9ex/module-info.java \
 src/com.jdk9ex/com/jdk9ex/*

src/com.jdk9ex/com/jdk9ex/InternalsCheck.java:8:
 error: package sun.invoke.util does not exist
 import sun.invoke.util.BytecodeName;
 ^
src/com.jdk9ex/com/jdk9ex/InternalsCheck.java:12:
 error: cannot find symbol
 String bName = BytecodeName.
toBytecodeName("java.lang.Object");
 ^
 symbol: variable BytecodeName
 location: class InternalsCheck
2 errors

These errors demonstrate the strong guarantees of API
integrity that are one of the goals of the Java module sys-
tem. As it stands, javac has been upgraded to prevent access
to the implementation class BytecodeName, but IDEs and
other tools within the Java environment do not yet acknowl-
edge this new reality—one more sign that there’s a long
way to go before JDK 9 is ready for the general population
of developers.

The good news is that all
of the major IDE vendors are
actively working on new ver-
sions to fully support Java 9.
For example, Oracle has
announced that NetBeans 9
will be focused on JDK 9 sup-
port, and Eclipse’s JDT now has
all active development happen-
ing on a JDK 9 branch.
A word about Unsafe. From the
point of view of the Java plat-
form developers, especially
those involved in the OpenJDK
project, “shotgun privacy” is a significant problem. While
the java and javax packages are protected by the “prohibited
package” SecurityException mechanism, this does not apply
to the internal implementation classes.

Java libraries and frameworks are not supposed to couple
directly to these implementation details. The attitude of
Java’s stewards has always been that to do so is dangerous,
and no attempt will be made to accommodate developers who
break the rules and link to internal details.

Despite repeated admonitions, many popular Java librar-
ies break the rules and access the internals of the platform.
This is a big problem, because it leaves the JDK developers in
a very difficult situation.

One choice is to concede that some internals have become
a de facto part of the API, support them, and accept that it
is now very difficult to make changes that prevent those
internals from being accessed. Another choice is to change
internals and, thus, affect or break libraries and frameworks
that millions of production applications rely on.

The most famous, widely used, and dangerous example
of this direct coupling is the sun.misc.Unsafe class. This
class represents a major pressure point in the adoption of

Many popular Java
libraries break the
rules and access the
internals of the platform.
This is a big problem,
because it leaves the
JDK developers in a very
difficult situation.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

64

//path to java 9 /

a modules system. If access to
Unsafe were simply shut off
in JDK 9, this would prevent
almost all Java applications from
upgrading, because basically
any nontrivial application will
use a library that relies, directly
or indirectly, on functionality
in Unsafe.

However, indefinite access to
Unsafe risks making it into an
unofficial, de facto standard, and
removes the possibility of evolv-
ing internal platform mechanisms. The middle path agreed
to between Oracle and the Java community is that tempo-
rary access will be provided for Java 9, but it is expected that
access will be removed (and replaced with standardized, sup-
ported equivalent functionality) in Java 10.

This means that Java developers will have an easier path to
upgrading to Java 9, because existing frameworks will con-
tinue to work. Library and framework developers will need to
migrate to the new mechanisms in time for Java 10, which is
not likely to ship until 2018.
What will developers need to do differently? Java developers will
need to adapt to a new way of packaging and deploying code
to get the most out of the new functionality. The good news,
though, is that there’s no need to start doing that straight-
away. The traditional methods using JAR files will continue to
work until such time as teams are ready to adopt the modular
way of working.

One simple approach (which teams can use even before
Java 9 arrives) is to make use of the Compact Profiles that
shipped as part of Java 8. This was a first step toward modu-
larity and defines three separate profiles that are true subsets
of the JRE. The smallest profile, compact1, is around 11 MB,
which saves a significant amount of space.

JDK 9 outreach
Using Modularity (video presentations from Devoxx)
The JDK 9 schedule of release
How version strings will appear in JDK 9

learn more

Applications that can run in a smaller profile than the full
JRE will have a much easier time converting to a modular
world. In many cases, it will be worth doing some up-front
work now to make life easier later. Also, understanding and
documenting application dependencies is a worthwhile exer-
cise in the reduction of technical debt.

Conclusion
The advent of modules is a large change in the Java envi-
ronment, probably one of the biggest ever. Although the
early-access previews do not contain all expected func-
tionality, there is still plenty for you to explore in the work
in progress. The release of Java 9 is months away, and the
feedback of developers who have tried Java 9 EA in real-
world tests is very welcome. The OpenJDK Adoption group is
the ideal place for interested developers to contribute their
feedback and find out what they can do to help move Java 9
modules forward. </article>

Ben Evans helps to run the London Java Community and repre-
sents the user community as a voting member on Java’s governing
body—the JCP Executive Committee. He is the author of The Well-
Grounded Java Developer, the new edition of Java in a Nutshell,
and the forthcoming Optimizing Java.

Although the early-
access previews do not
contain all expected
functionality, there is
still plenty for you to
explore in the work
in progress.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://wiki.openjdk.java.net/display/Adoption/JDK+9+Outreach
https://blogs.oracle.com/java/entry/modularity_in_java_9
http://openjdk.java.net/projects/jdk9/
https://blogs.oracle.com/java-platform-group/entry/a_new_jdk_9_version
https://wiki.openjdk.java.net/display/Adoption/Main

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

65

//jvm languages /

Gosu is about 13 years old. It began as a simple script-
ing language here at Guidewire Software late in 2002.

We needed a straightforward language for our custom-
ers to customize our products. Our basic criteria for the
language included that it be Java interoperable, statically
typed, familiar, and easy to use. Static typing facilitates our
larger goal to provide a safe and pleasurable user experi-
ence via deterministic tooling such as rich parser feedback,
code completion, refactoring, usage searching, and so forth.
We would much rather have pulled a language from the
shelf than build our own, but at the time, there weren’t any
scripting languages available that came close to satisfying
our needs. As a fledgling startup, we weren’t about to com-
promise at this critical stage; Guidewire’s success would be
won at least in part on our customers’ ability to tailor our
products using our language and tools. As a result, Gosu
came to life.

Since then, we’ve come a long, long way. With more cus-
tomers came demand for more Gosu features, which over
time led Gosu to become a powerful, general-purpose pro-
gramming language. Thus, unlike many programming
languages, nearly every step of Gosu’s development is a
result of true pragmatism—its features were developed and
refined for broad usability and have been vetted in the field
by hundreds of medium to very large, international corpo-

Gosu: A Modern, Down-to-Earth
Language for the JVM
A low-ceremony language used in large enterprise apps offers an extraordinarily flexible,
yet static, type system.SCOTT MCKINNEY

rations employing thousands of developers writing mission-
critical software with Gosu.

Hello
Getting down to business, you are probably more interested in
Gosu’s capabilities and syntax than in its history, so let’s get
to it. Here is Gosu’s “Hello, World!”:

print("Hello, World!")

That’s it. Because Gosu is inherently scriptable, there is
no need for boilerplate code, such as a Main class or main
method. But if you’re feeling nostalgic, this also works:

class RunMe {
 static function main(args: String[]) {
 print("Hello, World!")
 }
}

This class prints “Hello, World!” to the console. The same
holds for the former, simpler example. So in addition to con-
ventional class files, Gosu supports program source files that
are free-form scripting files. You can code up anything in
a program, including statements, functions, whole classes,
whatever—in any arrangement you like.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://gosu-lang.github.io/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

66

//jvm languages /

Scripting, experimenting, and learning. Programs are effectively
scripts. That is to say, Gosu is both a comprehensive, general-
purpose, static language and a concise scripting language.
As I’ll demonstrate shortly, Gosu’s powerful type inference
capabilities, its syntax, and the enhancements to Java’s run-
time library implement this dual mission. One aspect that
really qualifies Gosu as a scripting language is that it executes
directly from source—compilation to class files is optional.
When running from source, Gosu compiles and loads classes
on demand. There is no performance penalty aside from the
one-time price of compilation (to conventional bytecode).

In addition to scripting, programs also promote learn-
ing and experimentation. To leverage this ability, our full-
featured IntelliJ IDE plugin also provides a Scratchpad editor
for quickly cranking out and executing experimental code.
You can even execute Scratchpad scripts against a running
project in the debugger, without interrupting execution at
a breakpoint.
Class format. Gosu is foremost an imperative, object-oriented
language with classes, interfaces, structures, annotations,
enums, programs, templates, functions, and enhancements
all as first-class types. In addition, Gosu’s type system is
uniquely designed for customization—you can plug in your
own first-class types. I’ll cover more of the type system
as I go, but first let’s have a look at the basic format of a
Gosu class:

package example
uses java.util.List
class SampleClass extends SampleBaseClass
 implements SampleInterface {
 var _sampleField: List<String>
 construct(param: List<String>) {...}
 function sampleFunction(param: String) {...}
 property get SamplePropertry(): int {...}
 class SampleInnerClass {...}
}

As you can see, the main difference between Gosu and
Java syntax is the Pascal-style declarations where the name
precedes the type—for example, var name: Type. Choosing
this style mostly came from the desire for more-consistent
syntax where a variable’s type can be inferred. We’re also
happy with the Pascal style for achieving consistency with
generic declarations and, in our view, for providing better
overall readability.

After a quick scan of the code, you’ll notice some simi-
larities with Java. The package statement is the same,
and the uses statement is the equivalent of Java’s import.
Inheritance with extends and implements is the same.
The var keyword declares fields; they’re private by default.
Classes, constructors, functions, and properties are public by
default. Semicolons are extinct—that is, they’re optional but
discouraged. Whitespace is insignificant as well; newlines
have no meaning, except to us humans.

Some Features
Gosu’s feature set is much too broad to cover in a single
article. Instead let’s look at some features that will pique
your interest.
Properties. Think of properties as a formalization of Java’s
getter and setter methods. Gosu also provides shortcuts with
properties to eliminate boilerplate code. For instance, here’s
how you can declare a mutable property for a field:

var _names: List<String> as Names

A primary difference between a get/set pair of methods and
a property is that you reference a property consistently as a
single identifier, not via separate method calls:

property get Names(): List<String> {
 return names.copy() // returns a copy
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

67

//jvm languages /

Null-safety. Gosu provides several operators to save you from
NullPointer exceptions and from writing boilerplate code. So
instead of writing this:

if(location != null) {
 return location.Address
}
else {
 return null
}

you can write this:

return location?.Address

Named arguments and optional parameters. You can provide
default values for constructor and function parameters to
make the parameters optional to the caller:

function printList(list: List<String>,
 separator: String = ", ")
printList(myList)
printList(myList, " | ")

Both calls to printList() are valid. The first one uses the
default separator value. You can also name arguments when
calling a function:

function configure(lux=false, awd=false, ac=false)
configure(:awd = true)

Intervals. Interval (or Range) expressions are Gosu’s way of
expressing a contiguous set of numbers, dates, names, or
anything with a Comparable interface; they are denoted by
the .. operator:

var range = "A".."M"
print(range.contains("Jones")) // true
print(range.contains("Smith")) // false

In addition, if the elements in the interval also represent a
sequence, you can iterate over it. Here’s a simple way to print
the numbers 1 to 10:

for(i in 1..10) {
 print(i)
}

You can also set the step and unit, if applicable:

// A biweekly date sequence
var span = (date1..date2).step(2).unit(WEEKS)

And you can reverse the order and express open or closed
endpoints to the range:

10..1 // reverse order
start..|end // start inclusive, end exclusive

Delegation. As an alternative to class inheritance, Gosu
provides support for composition in the form of interface
delegation:

interface ClipboardPart {
 function cut()
 function copy()
 function paste()
}
class MyWindow extends Window
 implements ClipboardPart {
 delegate _myPart represents ClipboardPart =
 new ClipboardPartMixin(this)
}

Basically, this delegate statement hooks up the
ClipboardPartMixin with MyWindow’s implementa-
tion of ClipboardPart. No other work is necessary; all
ClipboardPart methods automatically forward to the del-
egate. No more boilerplate compositional code!

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

68

//jvm languages /

Blocks (aka closures). In appearance, Gosu blocks are similar to
Java lambdas:

var list = {"Pascal", "Java", "Gosu"}
var lengths = list.map(\ e -> e.length)

As you can see, Gosu blocks begin with a \ instead of Java’s
(); otherwise the syntax is nearly identical. Under the hood,
however, things are quite different. For starters, Gosu blocks
are true closures. Basically, this means that they can access
and modify any variables from the local scope. But what
really distinguishes a block from a lambda is that it has its
own type, the Function type. There is no need for functional
interfaces (or SAMs) as a go-between in Gosu, because the
Function type is a first-class type:

var capitalize(String):String = \s -> s.capitalize()

or

var capitalize = \s: String -> s.capitalize()

You can use Function types anywhere. For instance, you can
use Function types directly in a function’s parameter list:

function visitThings(consumer(Thing))

And you can use them with generics:

var listeners: Set<block(Event)>

Function types are 100 percent interoperable with Java 8
functional interfaces. You can pass a block to a functional
interface and pass a functional interface to a Function type.
Generics. Gosu generics use array-style covariance by default.
For instance, the following assignment is legal in Gosu:

var list: List<Object> = new ArrayList<String>()

While this is technically unsound, it works the way most
programmers think. So, unlike Java, Gosu does not have wild-
cards or any type of use-site variance. In our experience, use-
site variance is a significant source of confusion, which leads
to misuse and circumvention of generics via casting and other
techniques. Fundamentally, type safety exists to help program-
mers read and write better code; it shouldn’t get in the way.

Alternatively, if you don’t want array-style variance for your
generic class, you can make it fully typesafe using C# style
in/out variance modifiers in your type variable declarations.
For instance, typesafe Consumer and Producer interfaces can
be defined like so:

interface Consumer<in T> {
 function apply(t: T)
}
interface Producer<out T> {
 function get(): T
}

Generally, stuff returned out of a function is covariant while
stuff passed in to a function is contravariant. Gosu verifies
usage of in/out type variables against a more sophisticated
version of these basic rules. Note that if you mix a default
generic type with an in/out type, Gosu infers the variance of
the default type and checks whether it’s compatible:

// error: T is used in an 'out' position in Callable
interface Listener<in T> extends Callable<T> {
 function someEvent(t: T)
}

Here Gosu infers the variance of Callable’s T as “out” and
reports the incompatibility. Gosu infers variance of both Gosu
and Java types, including usage of wildcards inside Java types.

Another useful aspect of Gosu generics: type arguments
persist at runtime. In technical speak, Gosu employs type

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

69

//jvm languages /

reification as opposed to Java’s type erasure. This means that
the following code does what you expect:

var foo = new Foo<String>()
print(typeof foo) // prints Foo<String>

This cannot be done in Java, because of the type erasure.
Enhancements. An enhancement is a Gosu type that defines new
functions and properties for an existing type. Enhancements
live in separate source files such as classes; there is no need to
import them. Here is a simple String enhancement:

enhancement MyStringEnhancement : String {
 function print() {
 print(this)
 }
}

Now you can tell a String to print itself:

"Echo".print()

Gosu provides a host of useful enhancements for most
of the Java runtime library—tons of refreshing features for
Collections, Iterable, String, and so on.
Structures. Sometimes we need a way to make a type sat-
isfy an interface. For example, Java’s Rectangle, Point, and
Component classes all have X, Y coordinates accessible by
identically named methods:

class Rectangle {
 public double getX();
 public double getY();
 ...
}

class Point {
 public double getX();

 public double getY();
 ...
}

class Component {
 public int getX();
 public int getY();
 ...
}

Yet they do not share a common interface for accessing the
coordinate. Using nominal typing, there is no way to extract
an interface for these classes: we can’t modify them to imple-
ment a Coordinate interface. This is where structural typing
comes in handy:

structure Coordinate {
 property get X(): double
 property get Y(): double
}

var sorter = \ c1: Coordinate,
 c2: Coordinate -> {
 var delta = c1.Y == c2.Y
 ? c1.X - c2.X
 : c1.Y - c2.Y
 return delta < 0 ? -1 : delta > 0 ? 1 : 0
}

var points: List<java.awt.Point> =
 {new(2, 1), new(3, 5), new(1, 1)}

points.sort(sorter)

The Coordinate structure is just like an interface, but
Gosu determines assignability from its methods and prop-
erties instead of forcing a class to implement it nominally.
So in this example, because Point satisfies the structure of
Coordinate, it is considered structurally assignable to it.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

70

//jvm languages /

This applies equally to Rectangle and Component.
Note that structures can be generic, too. We could have

defined Coordinate like this:

structure Coordinate<out T extends Number> {
 property get X(): T
 property get Y(): T
}

Gosu infers the type arguments from the implement-
ing classes. For instance, Point structurally implements
Coordinate<Double>.

Internally, a structure is nearly identical to an interface;
in the JVM it is an interface. A structure can be implemented
nominally and enjoy the benefits of nominal typing and vice
versa; a structure can extend nominal interfaces.

Also it’s worth mentioning that a type can be structurally
assignable from enhancement methods. This powerful tech-
nique can be used to connect and unify disparate systems.
Type inference. By now you may have gathered that Gosu
infers types rather aggressively. Basically, if Gosu can
determine the type of something from its surroundings,
you don’t have to enter the type. You can still examine an
inferred type using the IDE if needed, but in most cases
types get in the way when they can otherwise be inferred.
For instance, the var statement infers its type from its ini-
tializer if present:

var name = "Fred"

There is no need to specify the type when Gosu can infer
it from "Fred". This is the simplest and probably the most
useful form of type inference. There are many more situa-
tions in which Gosu infers types, most notably with blocks
and generics. You can learn more about type inference and
the other features discussed in this article at the documen-
tation site for Gosu.

Templates. Templates are first-class types in Gosu. A Template
type is a text file with Gosu expressions and scripts embed-
ded in it, delimited by standard JSP-style syntax. This Gosu
file, SampleTemplate.gst, defines a simple example:

<%@ params(names: List<String>) %>
 All Names: <% for(name in names) { %>
 * ${name}
 <% } %>

You can render the template like this:

var str =
 SampleTemplate.renderToString({"Joe", "John"})
print(str)

You can also use template syntax directly in Gosu String
literals:

var age = 39
print("Dog years: ${age * 7}")

Custom types. No one likes code generation. It tends to be
messy and hard to maintain, is difficult to manage with
source control, often results in code bloat, and is commonly
a challenge to keep in sync. Gosu offers a powerful alterna-
tive via its Open Type System. The type system abstracts the
notion of a type in terms of public interfaces in our API that
you can plug in to provide first-class custom types. All core
Gosu types are implemented this way. We also provide cus-
tom types for Dynamic types, XML Schema Definition (XSD)
types, and Properties types.

IDE and Building
The JVM may be Gosu’s runtime, but IntelliJ IDEA is Gosu’s
universe. Gosu’s IntelliJ plugin is packed with professional-
grade features such as syntax/error highlighting, very smart

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://gosu-lang.github.io/docs.html

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

71

//jvm languages /

code completion, usage searching, “go to feature” navigation,
refactoring, code formatting, code inspections, comprehen-
sive debugger, incremental compiler, Scratchpad editing, and
more. Download it for free.

We’ve also recently released full support for building Gosu
projects with Maven and Gradle. We use these tools ourselves
to build and distribute Gosu and supporting projects.

Open Source
Gosu is a very active, fully open source language, found on
GitHub. There you’ll see that we’re also currently working on
some interesting projects to support an ecosystem for Gosu.
Notable among them is SparkGS, a simple yet powerful web
application framework for Gosu.

Conclusion
Guidewire’s internal need for a straightforward static lan-
guage to build and drive our applications ultimately led to
the development of a powerful, pragmatic language. We feel
that Gosu is uniquely positioned as both a powerful modern
OOP language and as a concise scripting language. You can
write small scripts and quickly execute them from source or,
as several enterprise customers have done, write Gosu appli-
cations that exceed 1 million lines of code. As a fully open
source project and now with support for open tooling such as
IntelliJ Community Edition, Maven, and Gradle, we invite you
to try Gosu in one of your projects or for a fun afternoon of
scripting. Enjoy! </article>

Scott McKinney is a senior staff engineer at Guidewire Software.
He is the creator of Gosu and is currently a principal developer and
lead on the Gosu team.

MANCHESTER JAVA
COMMUNITY

Formed in May 2013
by Alison McGreavy,
the Manchester Java
Community (MJC) is the
nexus for the city’s Java
community. Currently
led by McGreavy, Debbie
Roycroft, and Roberto
Nerici, the MJC has grown
from four members at
the first meeting to more

than 300 members. Meetings are held typically once a month
at venues such as MadLab, and draw on average 30 people.
The members come mainly from the Manchester, UK, area,
but some from as far away as Liverpool and Leeds. Sessions
range from lightning talks and hands-on instruction to guest
presentations. Over the last two years, topics have included
core Java, Java frameworks, tooling, JVM languages, and
the JVM itself. These sessions have encouraged homegrown
speakers and have attracted some great guest speakers such
as the London Java Community’s Ben Evans, the Ceylon
team from Red Hat, and Heinz Kabutz. The MJC is a mem-
ber of the JCP and will also be running a Java 9 Hack event in
January 2016.

The MJC has great links with the wider programming com-
munity, both in Java events such as JavaOne and Devoxx and
through the general tech community in Manchester. It is
keen on developing more.

If you plan to be in the Manchester area and would like to
participate in an MJC event, check out the Manchester Java
Community on Meetup.com or on Twitter @mcrjava.

//user groups /

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://gosu-lang.github.io/downloads.html
https://github.com/gosu-lang/gosu-lang
https://sparkgs.github.io/
http://www.madlab.org/
http://www.meetup.com/ManchesterUK-Java-Community/
http://www.meetup.com/ManchesterUK-Java-Community/
http://www.twitter.com/mcrjava

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

72

//containers /

The first article in this two-part series explained the key
concepts of Docker. It explained the first steps for get-

ting started with Docker using Toolbox, how to build your
first Docker image, how to package a Java application as
a Docker image, and how to run the image as a container.
Finally, a simple Java EE application was deployed on a
WildFly application server.

This article explains how to deploy an application with
multiple containers on multiple hosts. Specifically, I show
how a Java EE application deployed on WildFly can perform
CRUD operations using a database (here, Couchbase). Finally,
I demonstrate Docker Compose for creating multicontainer
applications, and I explain Docker Swarm for creating multi-
host application environments.

Docker Compose
Docker Compose is a tool for defining and running multicon-
tainer Docker applications. It is installed along with Docker
Toolbox, as explained in Part 1 of this series.

An application using Docker containers typically consists
of multiple containers—for example, one for an application
server, another for a database, possibly another for a mes-
saging server, and so on. Each container typically starts with
different configuration options such as port forwarding,
environment variables, volume mapping, and so on.

With Docker Compose, there is no need to write shell
scripts to start your containers. All containers are defined in
a YAML configuration file using services. Each service consists

Using Multiple Docker Containers
Assemble a cluster of Docker containers and run a Java EE app—without a lot of housekeeping.

ARUN GUPTA of one or more containers. A Docker Compose script is used
to start, stop, and restart the application plus all the services
in that application and all the containers within each service.
This approach is often helpful when starting a single con-
tainer inside a larger service, because all the options can be
specified beforehand in a file.

The command to start a Couchbase server that forwards
port 8091 (administration port), port 8093 (query port), and
some other ports in the container to similar ports on the
host, as well as map a Couchbase log directory in the con-
tainer to a directory on the host, would look like this:

docker run -d -v ~/couchbase/:/opt/couchbase/var
 -p 8091:8091 -p 8092:8092 -p 8093:8093 -p
 11210:11210 couchbase/server

[Enter the command above as a single line. —Ed.]
Instead of remembering all the options for starting this

container, you can define this command in a Docker Compose
file. By default, this file is named docker-compose.yml in
the current directory. The equivalent file for our command
looks like this:

mycouchbase:
 image: couchbase/server
 volumes:
 - ~/couchbase:/opt/couchbase/var
 ports:
 - 8091:8091

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015?pg=52#pg52

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

73

//containers /

 - 8092:8092
 - 8093:8093
 - 11210:11210

This file has one service, mycouchbase, which uses the
prebuilt image couchbase/server defined by the image
key. Volume mapping is done using the volumes key, and
port forwarding is done using the ports key. The key name/
values are analogous to their docker run counterpart, as
shown on the previous page.

The complete syntax for the Compose file is explained at
the Docker site.

Now, you can start the Couchbase database container by
running the following command:

docker-compose up -d

This command starts the service mycouchbase (in the
background because of the -d switch) and the Couchbase
container in this service.

A list of common commands that can be used with
Compose is shown in Table 1.

You can display the complete list of commands using the
command docker-compose --help.

Docker Compose becomes more relevant and interesting
when multiple services need to be started for an application,
which is generally the case. As an example, if your application
consists of one WildFly service and one Couchbase service,
then the Compose file would look like this:

mycouchbase:
 container_name: "db"
 image: couchbase/server
 volumes:
 - ~/couchbase:/opt/couchbase/var
 ports:
 - 8091:8091
 - 8092:8092
 - 8093:8093
 - 11210:11210
mywildfly:
 image: arungupta/wildfly-admin
 environment:
 - COUCHBASE_URI=db
 ports:
 - 8080:8080
 - 9990:9990

This application uses two services, mycouchbase and
mywildfly. The mycouchbase service starts the Couchbase
server. It has an additional attribute, container_name, that
specifies a custom container name instead of a generated
default name. The mywildfly service starts the WildFly appli-
cation server. The default WildFly image exposes only port
8080 for the application to be accessed. The custom image,
arungupta/wildfly-admin, starts WildFly such that the
management interface is bound to all network interfaces. It
also exposes port 9990, which can then be used for deploying
applications. In addition, it also has an environment variable,
COUCHBASE_URI, that is then used in applications deployed on
WildFly to access the database. I’ll provide more detail about
this a little later (when the application environment is started).

C OMM A ND P URP O S E
up CREATE AND START CONTAINERS

stop STOP SERVICES

rm REMOVE STOPPED CONTAINERS

ps LIST CONTAINERS

logs VIEW OUTPUT FROM CONTAINERS

scale SET THE NUMBER OF CONTAINERS FOR A SERVICE

Table 1. Common commands used in Compose

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.docker.com/compose/compose-file/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

74

//containers /

The image key in the Compose file is employed to run a
prebuilt image. Alternatively, a build key can be used to
build an image and then run it. The value of this build key
is the name of the directory in which the Dockerfile that
defines the image definition exists.

For example, in our previous example, if the stock
Couchbase image is used but a custom WildFly image needs
to be built, then the updated service in docker-compose
.yml is this:

mywildfly:
 image: .
 environment:
 - COUCHBASE_URI=db
 ports:
 - 8080:8080
 - 9990:9990

Notice that the only change here is the use of the image
key. The directory location is relative to the Compose file.

Docker Compose provides two methods to share configu-
ration: by providing multiple Compose files or by extending
individual services using the extends keyword.

As mentioned earlier, the default filename for a Docker
Compose file is docker-compose.yml. You can specify an
alternative name using the -f switch, and multiple files using
multiple -f switches. This option allows multiple Compose
files to be created and targeted to different environments
such as dev, test, continuous integration, and production.
This option can also be used to deploy the same code but dif-
ferent databases in different environments. Overall, this abil-
ity reduces impedance mismatches between environments.

By default, Compose reads docker-compose.yml and an
optional docker-compose.override.yml file. By conven-
tion, docker-compose.yml defines the base configuration
and docker-compose.override.yml, if present, can over-
ride the base configuration.

Docker Swarm
Docker Swarm provides native clustering for Docker. It
allows you to create and access a pool of Docker hosts using
the full suite of Docker tools. Because Docker Swarm serves
the standard Docker API, any tool that already communicates
with a Docker daemon can use Swarm to scale transparently
to multiple hosts. Figure 1 shows how Docker Swarm works in
a typical setup.

The important elements include the following:
■■ Swarm manager. The swarm manager is a predefined Docker

host. It is a single point for all administration. The swarm
manager orchestrates and schedules containers for the
entire cluster. You can configure the swarm manager for
high availability.

■■ Swarm nodes. The containers are deployed on nodes that are
additional Docker hosts. Each node runs a Docker Swarm
agent that registers the referenced Docker daemon, monitors
it, and updates the discovery back end with the node’s status.

■■ Scheduler strategy. Different scheduler strategies—spread

Containers

Node Agent

Swarm Cluster

Swarm Master
(Manager)

Discovery Service

Node 1

Node 2

Node 3

Docker
Swarm

etcd
Consul

ZooKeeper
Docker discovery service

Figure 1. A typical setup using Docker Swarm

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.docker.com/swarm/multi-manager-setup/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

75

//containers /

(the default), binpack, and random—can be applied to
pick the best node to run your container. The default
strategy optimizes the node for the least number of
running containers.

■■ Node discovery service. The swarm manager talks to a
hosted discovery service. This service maintains a list of
IP addresses in the swarm cluster. The Docker hub hosts
a discovery service that can be used during development.
In production, the default discovery service is replaced by
other services such as etcd, Consul, or ZooKeeper. You can
even use a static file.

■■ Standard Docker API. Docker Swarm serves the standard
Docker API. Thus, any tool that talks to a single Docker
host will seamlessly scale to multiple hosts now. This
means that if you were using shell scripts utilizing the
Docker CLI to configure multiple Docker hosts, the same
CLI can now talk to a Docker Swarm cluster.
Deploying a multicontainer Java application that uses

Couchbase for a Docker Swarm cluster that spans multiple
hosts requires the following steps:

1.	 Create the discovery service.
2.	 Create the Docker Swarm cluster.
3.	 Start the application environment.
4.	 Configure the Couchbase server and load sample data.
5.	 Deploy the application to the Docker Swarm cluster.
Docker Swarm takes care of the distribution of deployments

across the nodes.
Figure 2 provides a conceptual overview of different compo-

nents in the application:
■■ The cluster has two nodes: one master and another

worker node.
■■ Docker Compose is used to start the application environ-

ment on the cluster.
■■ The discovery service is hosted on a separate machine out-

side the cluster.

Maven is used to configure Couchbase and deploy the
application to WildFly. Note: This article uses WildFly and
Couchbase. But you can easily use Tomcat, GlassFish, or
any other application server. Similarly, you can use any
other database server such as MySQL or JavaDB. Naturally,
the image and the included application would need to be
updated accordingly.

Let’s dig into the details of how to set this up.

Create the Discovery Service
I will use Consul for the discovery service, although other
similar tools, such as etcd and ZooKeeper, can be used
instead.

First, create a new Docker machine that will host the dis-
covery service:

Figure 2. A simple service running on a Docker Swarm

Discovery
Service

WildFly Couchbase

Docker
SwarmMaster Node 01

mycouchbase:
 container_name: "db"
 image: couchbase/server
 ports:
 - 8091:8091
 - 8092:8092
 - 8093:8093
 - 11210:11210
mywildfly:
 image: arungupta/wildfly-admin
 environment:
 - COUCHBASE_URI=db
 ports:
 - 8080:8080
 - 9990:9990

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://consul.io/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

76

//containers /

docker-machine create -d=virtualbox consul-machine

Then connect to this machine:

eval $(docker-machine env consul-machine)

Run the Consul service using the following Compose file:

myconsul:
 image: progrium/consul
 restart: always
 hostname: consul
 ports:
 - 8500:8500
 command: "-server -bootstrap"

Start this service using docker-compose up -d. You can
verify the started container using the docker ps command
described in the first part of this article.

Create the Docker Swarm Cluster
Docker Swarm is fully integrated with Docker Machine, and
so it is the easiest way to get started. Create a swarm master
and point to the Consul discovery service:

docker-machine create -d virtualbox
 --virtualbox-disk-size "5000" --swarm
 --swarm-master --swarm-discovery=
 "consul://$(docker-machine ip consul-machine)
 :8500" --engine-opt="cluster-store=consul://$(
 docker-machine ip consul-machine):8500"
 --engine-opt="cluster-advertise=eth1:2376"
 swarm-master

The following are the meanings of these switches:
■■ --swarm configures the machine with Docker Swarm.
■■ --swarm-master configures the created machine to be the

swarm master.

■■ --swarm-discovery defines the address of the dis-
covery service.

■■ --cluster-advertise advertises the machine on the
network.

■■ --cluster-store designates a distributed key/value
storage back end for the cluster.

■■ --virtualbox-disk-size sets the disk size for the cre-
ated machine to 5 GB. This is required so that the WildFly
and Couchbase images can be downloaded onto any of
the nodes.
You can get more information about this machine by run-

ning the inspect command. If you run it, you’ll see that the
disk size is indeed 5 GB.

Now, create a new machine to join this cluster:

docker-machine create -d virtualbox
 --virtualbox-disk-size "5000" --swarm
 --swarm-discovery=
 "consul://$(docker-machine ip consul-machine):
 8500" --engine-opt="cluster-store=consul://$(
 docker-machine ip consul-machine):8500"
 --engine-opt="cluster-advertise=eth1:2376"
 swarm-node-01

Notice that no --swarm-master option is specified in
this command, which ensures that the created machine is
a worker node.

If you list all the created machines, you will see the
contents of Table 2. The machines that are a part of the clus-
ter have the cluster’s name in the SWARM column; other-
wise, that column is blank for machines that are not part of
the cluster. For example, consul-machine is a standalone
machine, whereas all the other machines are part of the
swarm-master cluster. The swarm master is also identified
by (master) in the SWARM column.

Connect to the swarm cluster and find some information
about it:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

77

//containers /

eval "$(docker-machine env --swarm swarm-master)"
docker info

Note that --swarm is specified to connect to the swarm
cluster. Otherwise, the command will connect to the
swarm-master machine only.

The docker info command provides detailed output about
the different nodes and the number of containers running on
each node. The first part of the output provides a summary
and is shown below:

docker info
Containers: 3
Images: 2
Role: primary
Strategy: spread
Filters: health, port,
 dependency, affinity, constraint

There are two nodes: one swarm master and one swarm
worker node. There are three containers running in this
cluster: one swarm agent on the master and each node,
and there is an additional swarm-agent-master running on
the master.

Start the Application Environment
The cluster is now ready, and our application can be deployed
to it. This Java EE application deployed on WildFly will pro-
vide a CRUD/REST interface to the data in Couchbase.

I will use the Compose file shown earlier to start the appli-
cation environment. But before I start, let’s look at the cur-
rent state of the network in the cluster.

By default, Docker creates three networks for each host, as
shown in Table 3.

Docker allows you to create bridge and overlay networks.
Bridge networks span a single host, and overlay networks
span multiple hosts. The Docker Compose application can
be started with the --x-networking switch. In this case,
a bridge network is created for a single host and an overlay
network is created for a swarm cluster.

Make sure you are connected to the cluster by running the
following command:

 eval "$(docker-machine env --swarm swarm-master)".

I will use the Compose file shown earlier to start WildFly
and Couchbase. In the WildFly service, the COUCHBASE_
URI environment variable is set to db. And this is the
name of the Couchbase container. Start the application with

Table 3. Three networks created by Docker

N A ME AC T I V E DRI V ER S TAT E URL SWA RM
consul-machine - virtualbox Running tcp://192.168.99.100:2376

swarm-master * virtualbox Running tcp://192.168.99.101:2376 swarm-master (master)

swarm-node-01 - virtualbox Running tcp://192.168.99.102:2376 swarm-master

Table 2. The contents of the sample Docker Swarm

NE T WORK N A ME P URP O S E

bridge DEFAULT NETWORK THAT CONTAINERS CONNECT TO

none CONTAINER-SPECIFIC NETWORKING STACK

host ADDS THE CONTAINER ON THE HOST’S NETWORKING STACK

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

78

//containers /

the following command:

docker-compose --x-networking up -d

An overlay network, specific to the application, is created.
You can verify this by running the following command:

docker network ls

Three networks for each swarm node will be shown. In
addition, the wildflycouchbasejavaee7 overlay network
and the docker_gwbridge bridge network are created for
containers to gain connectivity outside the cluster.

You can verify the WildFly and Couchbase containers by
using the docker ps command. The truncated output of this
command shows that the Couchbase server is running on
the swarm-master machine and WildFly is running on the
swarm-node-01 machine.

Configure the Couchbase Server and Install the
Sample Data
When it is started as a Docker container, the Couchbase
server needs to be configured so that it can be used for
storing data. Fortunately, it provides a REST API that can
do exactly that. This API can also be used to upload the
sample data.

Use git to clone the online app, as shown next, and then
use Maven for the installation. This application has a Maven
profile that allows you to configure the Couchbase server
using the REST API.

git clone https://github.com/
 arun-gupta/couchbase-javaee.git
mvn install -Pcouchbase -Ddocker.host=
 $(docker-machine ip swarm-master)

In this snippet, $(docker-machine ip swarm-master)

will provide the IP address of the swarm master machine that
was created earlier. You could use the actual IP address (which
could be found using docker-machine ip swarm-master)
instead of using $(docker-machine ip swarm-master).

Deploy the Application to the Docker Swarm Cluster
Deploying the application requires us to specify the IP
address of the host where WildFly is running and the user-
name/password of a user in WildFly’s administration realm.
In our case, the IP address is that of the swarm-node-01
machine and the username/password values are the ones that
are used to build the arungupta/wildfly-admin image.

The exact command (to be entered as a single line) will be

mvn install -Pwildfly -Dwildfly.hostname=
 $(docker-machine ip swarm-node-01)
 -Dwildfly.username=admin
 -Dwildfly.password=Admin#007

You might want to obtain the IP address of the machine
running WildFly by using $(docker-machine ip swarm-
node-01) and then use the IP address instead.

Access the Application
Now that the WildFly and Couchbase services have started,
it’s time to access the application. You need to specify the IP
address of the machine where WildFly is running. An easy
way is to do this is to use the widely known command-line
utility curl:

curl http://$(docker-machine ip swarm-node-01):8080/
 couchbase-javaee/resources/airline

[This command should be entered as a single line. —Ed.]
This command prints the list of 10 airlines from the sample
data that was configured earlier in Couchbase.

Alternatively, you can obtain the IP address of WildFly

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

79

//containers /

using the docker-machine ip swarm-node-01 command
and then access the application in your browser.

This application supports GET, PUT, POST, and DELETE APIs
for resources in the Couchbase sample data. The complete list
of REST APIs for this application is documented online.

Conclusion
This two-part series explained how to deploy a Java applica-
tion on Docker. The first part introduced the basic concepts
of Docker and the Docker Toolbox. I then discussed how to
build an image and run a container. Those basics will apply to
almost all Docker projects.

This second part introduced Docker Compose and Docker
Swarm to help build multicontainer applications that can be
deployed on multiple hosts. In the process, I touched on how
Docker networking provides isolated environments for dif-
ferent applications. This should provide what you need to get
started using multiple Docker containers in your application.

Docker nicely complements Java’s “write once, run any-
where” mandate, because it enables “package once, deploy
anywhere.” The huge ecosystem that has built up around
Docker in the past few years is driven by Docker’s simplicity.
With a little experimenting, I expect you will be equally excited
about packaging Java applications using Docker. </article>

Arun Gupta (@arungupta) is the vice president of developer advo-
cacy at Couchbase. He is also a Java Champion and a JUG leader.
Years ago, he was a founding member of the Java EE team.

Getting Started with Docker

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/arun-gupta/couchbase-javaee
https://docs.docker.com/windows/started/
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

80

//microservices /

In this article, we explore how to develop microservices
with standard Java EE APIs. Microservices have become an

important architectural style for developing complex applica-
tions composed of small, independent services deployed as
individual processes. These services communicate through
well-defined APIs. Each microservice is self-contained;
is responsible for a single task; is accessible through a
lightweight API, such as REST; and has its own lifecycle.
Microservices result in a highly decoupled, modular, and reus-
able architecture for composite applications.

Developing microservices in Java means that not only is the
application designed around REST services, but also that each
service, the front end, and other components are deployed
separately and independently. In other words, instead of
packing all the services, business logic, front end, and other
modules into a single EAR file and deploying it as a mono-
lith, microservices use individual archives (such as JAR files)
for each component. The KumuluzEE framework, as we’ll see
shortly, automates the tasks related to the configuration and
deployment of microservices, specifically on Java EE. [Note:
KumuluzEE won the Duke’s Choice Award at the 2015 JavaOne
conference. —Ed.]

Microservices with Java EE
Suppose we want to create an online train-reservation ser-

vice people can use to plan their route and buy their tickets.
For brevity, we are going to look at a simplified version of this
example; it will allow only viewing routes and booking a route
via a simple user interface.

Using the traditional approach, we would create a mono-
lithic EAR package that would include our business logic,
services, and one or more WAR packages containing the front
end. We would deploy the EAR file to an application server,
such as Oracle WebLogic Server or GlassFish.

In contrast, using the microservice architecture, we
start by separating the responsibilities. Routes, the book-
ing service (reservations), and the UI become three sepa-
rately developed, configured, and deployed microservices.
They are stateless and communicate through REST inter-
faces—although we could also use SOAP or remote method
invocation (RMI). In this way, we create microservices that
are domain-defined and follow the “single responsibility”
principle with regard to explicit interfaces. We have created a
highly modular, decoupled architecture, where each service is
responsible for a single, dedicated piece of functionality. Also,
each microservice has its own lifecycle. The proposed archi-
tecture using microservices is shown in Figure 1.

In the remainder of this article, we use this simplified
example. But keep in mind that microservices are best suited
for complex applications and systems.

KumuluzEE: Building Microservices
with Java EE
Develop self-contained microservices with standard Java EE APIs using the open source
KumuluzEE framework.

TILEN FAGANEL AND
MATJAZ B. JURIC

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://ee.kumuluz.com/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

81

//microservices /

Advantages. Let us now explore the advantages of microser-
vices compared with a monolithic approach. The most obvi-
ous advantage is that microservices lead to a more flexible,
decoupled architecture. Each microservice can be developed
independently, which simplifies lifecycle and change man-
agement. For example, if we need to upgrade the booking
service, we do not have to redeploy the whole application.
Every microservice is a separate project with a separate
repository and deployment configuration. We can roll out
new features iteratively, thus increasing agility.

If, over time, we would like to upgrade to newer versions of
Java, we can upgrade each microservice separately. For com-
plex applications, this is a huge benefit, because it is often
difficult to upgrade complex Java EE applications (to a new
version of the app server or to new releases of Java EE and
Java SE). Even better, microservices allow us to gradually
incorporate new technologies.

Last but not least, microservices allow for much better scal-
ability. For example, the route calculation service might get
higher traffic than the booking service, because users might
use the route calculation more frequently than they book
a reservation. With microservices, we can scale the book-

ing service independently of the rest of the application. This
approach is a perfect fit for cloud and PaaS (platform as a ser-
vice) environments, where elastic scalability can be configured
easily. Scaling a microservice application in a Docker environ-
ment becomes a breeze. In other words, a microservices archi-
tecture is a good match for cloud-enabled applications.

To fully exploit these benefits, microservices need to be
stateless. Every resource (such as a database, object storage,
and so on) that a microservice uses should be configurable
separately (usually via a connection string or environment
parameters).
Disadvantages. Microservices do not come without draw-
backs. Setting up and configuring Java EE projects to accom-
pany this kind of architecture is often not trivial. Actually,
it can require a lot of manual configuration and tracking of
dependencies, and it can lead to significant operational com-
plexity. Deployment becomes more complex, as does testing.

KumuluzEE
KumuluzEE addresses some of these drawbacks. It auto-
mates the tasks related to configuration and deployment
of microservices in a seamless way. At its most basic,
KumuluzEE collects each microservice together with the Java
EE APIs’ runtime into a simple, standalone package (JAR
file), providing a minimal footprint by including only those
APIs (and their runtimes) that are actually used. This enables
developers to build standalone, stateless, self-contained
microservices and package them in an efficient way with-
out the overhead of including the entire Java EE application
server in each microservice. Microservices created this way
can be executed directly from the JRE with a minimal foot-
print and quick startup and shutdown times.

Getting Started
We’ll now create our microservices using KumuluzEE, stan-
dard Java EE, and Maven. First, we create three Maven

Figure 1. Overview of the proposed microservice architecture

GET /

GET /api/routes

POST /api/booking

UI
Service

Routes
Service

Booking
Service

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

82

//microservices /

projects—each containing its own microservice. For brevity’s
sake, we will create them in the same repository. We will create
a routes project for the route calculation service, a bookings
project for the booking service, and a ui project for the front
end. We will also add a module that will hold our JPA entities
(models) and a module that will hold our utils, because they
will be shared with our three microservices. Note: In real-
world projects, it is generally recommended to use a separate
repository for each microservice so that they are treated as
separate entities and have separate versioning and revision
history as well as separate deployment.

We will also create the topmost pom.xml file. You can look
at the project structure and the pom.xml file by downloading
the source code for this project from GitHub.

To create our microservice projects, we will use Maven
archetype generation (mvn -B archetype:generate) for all
modules. This will generate the three projects we require.

Adding KumuluzEE
Now we need to add the appropriate dependencies to the
KumuluzEE framework. KumuluzEE is completely modular,
which means that apart from the core functionality each Java
EE component is packaged as a separate module and must
be included explicitly as a dependency in order to be used.
KumuluzEE will automatically detect which modules are
included in the classpath and properly configure them.

We include KumuluzEE by defining the appropriate depen-
dency in Maven. It is recommended that we define a property
with the current version of KumuluzEE and use it with every
dependency:

<properties>
 <kumuluzee.version>
 2.0.0
 </kumuluzee.version>
</properties>

Adding the Front-End UI Service
Let’s start with the ui microservice and include the core
KumuluzEE module for bootstrapping the logic and configu-
ration. It provides the com.kumuluz.ee.EeApplication
class with the main method that will bootstrap our app. We
will also include the servlet and the HTTP server. We will use
a Jetty servlet implementation, which is known for its high
performance and small footprint. The ./ui/pom.xml file
contains this:

<dependency>
 <groupId>com.kumuluz.ee</groupId>
 <artifactId>kumuluzee-core</artifactId>
 <version>${kumuluzee.version}</version>
</dependency>
<dependency>
 <groupId>com.kumuluz.ee</groupId>
 <artifactId>kumuluzee-servlet-jetty</artifactId>
 <version>${kumuluzee.version}</version>
</dependency>

We must also include the maven-dependency-plugin
in our pom.xml file, which will copy all our dependencies
together with the classes. So we add the following to the
./ui/pom.xml file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>2.10</version>
 <executions>
 <execution>
 <id>copy-dependencies</id>
 <phase>package</phase>
 <goals>
 <goal>copy-dependencies</goal>
 </goals>
 </execution>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/TFaga/kumuluzee-examples/tree/master/java-magazine-trains

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

83

//microservices /

 </executions>
</plugin>

This is the bare minimum required to run a microservice
with plain servlets and static files. To try it out, we can add
a simple index.xhtml HTML file. KumuluzEE will use the
webapp folder at the root of the resource folder to look for
configuration data and files. This is where we should put
the files.

To try it out, run maven package. Then, you can start the
microservice using the following command:

$ java -cp ui/target/classes:ui/target/dependency/* \
 com.kumuluz.ee.EeApplication

Go to http://localhost:8080/ in your browser and you
should see the content of the index.xhtml HTML file. Of
course, you can use JSP, use a servlet, or add JSF support and
use it for the front end. We will extend the front end shortly.

Defining the JPA Module
We follow the procedure described above for each microser-
vice. Because each microservice is its own project, you can
customize it as much as you need.

Before we start developing the routes and booking services,
we will define the JPA module with entities. To include JPA,
we add the EclipseLink JPA implementation. We will also add
the database driver. In our case, we will use the PostgreSQL
database. However, you are free to use any database. Place
the required dependencies in ./models/pom.xml:

<dependency>
 <groupId>com.kumuluz.ee</groupId>
 <artifactId>kumuluzee-jpa-eclipselink
 </artifactId>
 <version>${kumuluzee.version}</version>
</dependency>

<dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <version>9.4-1201-jdbc41</version>
</dependency>

Next, we will add the persistence.xml file and entity
classes that will be shared with both our microservices even
though the microservices will be run separately. This file
is the same as what you would develop in a traditional Java
EE application. You can look at the provided sample source
code to see an example. Notice that the values defined in
persistence.xml for the database URL, username, and
password can be overwritten by setting the DATABASE_URL,
DATABASE_USER, and DATABASE_PASS environment vari-
ables, respectively. Doing this is useful for easy configuration
in Docker-style environments.

We are now ready to write the entity classes. We use stan-
dard JPA, which does not require any modifications for
KumuluzEE. The example JPA entity classes for Route and
Booking are shown next. The first file, .../models/Route
.java, contains the following:

@Entity
@NamedQuery(name="Route.findAll",
 query="SELECT r FROM Route r")
public class Route {

 @Id
 @GeneratedValue(strategy =
 GenerationType.IDENTITY)
 private Integer id;

 private String name;

 private String start;

 private String end;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.eclipse.org/eclipselink/#jpa

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

84

//microservices /

 @Temporal(TemporalType.TIMESTAMP)
 private Date duration;

 @ManyToMany(mappedBy = "routes")
 private List<Booking> bookings;

 // ... Omitted getters/setters
}

The booking file, .../models/Booking.java, contains
this:

@Entity
@NamedQuery(name="Booking.findAll",
 query="SELECT b FROM Booking b")
public class Booking {

 @Id
 @GeneratedValue(strategy =
 GenerationType.IDENTITY)
 private Integer id;

 @Temporal(TemporalType.TIMESTAMP)
 private Date orderDate;

 @ManyToMany
 private List<Route> routes;

 // ... Omitted getters/setters
}

Implementing the Routes and Booking Services
We are now ready to implement the routes and booking ser-
vices. We will need JAX-RS for the REST interfaces. We will
use Jersey as implemented in KumuluzEE. We will also add
CDI, because we want to use the EntityManager injection
using @PersistenceContext. However, we could just as well
do without CDI to keep our microservice even lighter. We add
the following dependencies to ./booking/pom.xml:

<dependency>
 <groupId>com.kumuluz.ee</groupId>
 <artifactId>kumuluzee-jax-rs-jersey</artifactId>
 <version>${kumuluzee.version}</version>
</dependency>
<dependency>
 <groupId>com.kumuluz.ee</groupId>
 <artifactId>kumuluzee-cdi-weld</artifactId>
 <version>${kumuluzee.version}</version>
</dependency>

Now, let’s implement the booking REST service. We’ll
create a booking resource that contains two methods:
createBooking(Booking) and getBooking(). Make sure
you add the correct dependencies, as described earlier. Also
make sure you add the models module to every microservice
for access to JPA entities, whose REST service will be used.
The code is:

@ApplicationPath("/")
public class BookingApplication extends
 javax.ws.rs.core.Application {
}

Then in BookingsResource.java we have this:

@Path("/bookings")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
@RequestScoped
public class BookingsResource {
 @PersistenceContext(unitName = "trains")
 private EntityManager em;

 @GET
 public Response getBookings() {

 List<Booking> bookings = em.createNamedQuery(
 "Booking.findAll", Booking.class)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://jersey.java.net/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

85

//microservices /

 .getResultList();

 return Response.ok(bookings).build();
 }

...

 @POST
 public Response createBooking(Booking b) {
 em.getTransaction().begin();
 em.persist(b);
 em.getTransaction().commit();
 return Response.status(
 Response.Status.CREATED)
 .entity(b).build();
 }
}

As you can see, with KumuluzEE the microservice imple-
mentation does not require any modifications and is exactly
the same as with any other Java EE application. You can
implement the remaining microservices the same way or look
at the provided sample code.

Handling Service Discovery
Let’s suppose that we are using JavaServer Faces (JSF) for
the front-end UI module. From there, we will be calling our
microservices via REST to receive or save the actual data. The
main problem with this is that we need to know the exact
URLs of the microservices. We could pass the URLs via envi-
ronment variables. However, that approach would require
manual updating every time anything changes. And in the
cloud, these changes can be quite frequent.

A better solution would be to dynamically query the address
of the requested microservice. We will use Apache ZooKeeper
for service discovery, but we could also use any similar tool.
In short, ZooKeeper is a centralized service for maintain-
ing configuration information. We will use it to store the

correct URL to each microservice. We add a helper class,
ServiceRegistry, in our utils module to handle the
dynamic registering, unregistering, and retrieval of endpoints
with ZooKeeper:

@ApplicationScoped
public class ServiceRegistry {

 private final CuratorFramework zookeeper;
 private final
 ConcurrentHashMap<String, String> zonePaths;

 @Inject
 public ZooKeeperServiceRegistry()
 throws IOException {
 try {
 String zookeeperUri =
 System.getenv(“ZOOKEEPER_URI”);
 zookeeper = CuratorFrameworkFactory
 .newClient(zookeeperUri,
 new RetryNTimes(5, 1000));
 zookeeper.start();
 zonePaths = new ConcurrentHashMap<>();
 } catch (IOException) {
 ...
 }
 }

 public void registerService(
 String name, String uri) {
 try {
 String node = “/services/” + name;
 if (zookeeper.checkExists()
 .forPath(node) == null) {
 zookeeper.create()
 .creatingParentsIfNeeded()
 .forPath(node);
 }
 String nodePath =
 zookeeper.create().withMode(

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://zookeeper.apache.org/

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

86

//microservices /

 CreateMode.EPHEMERAL_SEQUENTIAL)
 .forPath(node + “/_”,
 uri.getBytes());
 zonePaths.put(uri, nodePath);
 } catch (Exception ex) {
 ...
 }
 }

 // ... Similar for the other methods.
 // See full example available for download.
}

The ZOOKEEPER_URL environment variable should contain
our ZooKeeper URL. We will be starting a ZooKeeper service
alongside our microservices using Docker, which is discussed
in the next section. Also make sure that the utils package is
added as a dependency to every microservice.

We can now inject the service above into our microservices
to register its URL upon startup and unregister it upon shut-
down. One way to do this is to add a bean to our booking
microservice to handle this task dynamically:

@ApplicationScoped
public class BookingService {

 @Inject
 ServiceRegistry services;

 private String serviceName = "trains-booking";
 private String endpointURI;

 public BookingService() {
 endpointURI =
 System.getenv("BASE_URI");
 }

 @PostConstruct
 public void registerService() {

 services.registerService(
 serviceName, endpointURI);
 }

 @PreDestroy
 public void unregisterService() {
 services.unregisterService(
 serviceName, endpointURI);
 }
}

We use the @PostConstruct, @PreDestroy, and
@ApplicationScoped annotations to make sure we reg-
ister and unregister the service only once per lifecycle.
The BASE_URI environment variable should contain the
microservice’s public URI. We can now create a similar bean
for each of our microservices.

Injecting the Microservices at the Front End
We can use the just-described approach for injection on the
front end to connect to the REST services. We can inject our
ServiceDiscovery bean to our JSF backing bean to retrieve
the URL of a microservice we want to invoke, as shown below:

@Model
public class BookingsBean {

 @Inject
 ServiceRegistry services;

 public List getAllBookings() {
 return ClientBuilder.newClient()
 .target(services.discoverServiceURI(
 "trains-booking"))
 .path("bookings")
 .request().get(List.class);
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

87

//microservices /

Updating the JSF Front End
Finally, let’s update our index.xhtml file in the ui module to
use the created bean and to list the available bookings:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html >
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>All available bookings</title>
 </h:head>

 <h:body>
 <h:dataTable
 value="#{bookingsBean.allBookings}"
 var="booking">
 <h:column>
 <f:facet name="header">Booking id</f:facet>
 #{booking.id}
 </h:column>

 <h:column>
 <f:facet name="header">Date of order
 </f:facet>
 #{booking.orderDate}
 </h:column>

 </h:dataTable>

 </h:body>
</html>

And we’re done! We have created three microservices that
will run independently of each other. They communicate
through REST interfaces and share common resources such as
JPA entities. Of course, we could use HTML5 with AngularJS or
ReactJS for the front end as well.

Deploying and Running Using Docker
We can now build and run our microservices. To demon-
strate this, we will use Docker. First we need to create a
Dockerfile, which will contain the steps to create a Docker
image that will build each microservice and run it. Because
KumuluzEE runs a microservice as a normal, single-process,
standalone JAR file with a minimal footprint (and does not
require a separate app server instance for each microservice),
it fits perfectly with how Docker operates. The Dockerfile
is shown next. Its ./routes/Dockerfile file is in the
downloaded files.

FROM java:openjdk-8u45-jdk
MAINTAINER info@kumuluz.com
RUN apt-get update -qq && \
 apt-get install -y wget git
RUN wget [...maven binaries...] && \
 [...install maven...]
RUN mkdir /app
WORKDIR /app
ADD . /app
RUN mvn clean package -Pdeploy
ENV JAVA_ENV=PRODUCTION
EXPOSE 8080
CMD ["java", "-server", "-cp",
 "ui/target/classes:ui/target/dependency/*",
 "com.kumuluz.ee.EeApplication"]

As we can see, the Dockerfile is pretty simple and
straightforward. It installs the required dependencies, builds
the microservice, and supplies the command to run it. In our
case, we can use the same Dockerfile for every microser-
vice, except for the final command, which specifies which
microservice is going to run in a particular Docker container.

Next, we need to build a Docker image for every microser-
vice that we have:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

88

//microservices /

$ docker build -t trains/ui \
 –f ui/Dockerfile .
$ docker build -t trains/routes \
 –f routes/Dockerfile .
$ docker build -t trains/bookings \
 –f bookings/Dockerfile .

Once built, these images can be run anywhere Docker or
the Docker API is used, as well as anywhere Docker Swarm,
Kubernetes, various PaaS providers, and many such services
are used. To test the images, we can run them locally. We
also need to start a ZooKeeper instance by using an existing
image. Don’t forget to pass the required environment vari-
ables to our microservices (using the -e switch). The follow-
ing example uses 172.17.42.1 as the Docker host, because that
is the default. Adjust as needed.

$ docker run -p 2181:2181 -d fabric8/zookeeper
$ docker run --name ui -p 3000:8080 -d \
 -e BASE_URI='http://172.17.42.1:3000' \
 -e ZOOKEEPER_URI=172.17.42.1:2181 trains/ui
$ docker run --name routes -p 3001:8080 -d \
 -e BASE_URI='http://172.17.42.1:3001' \
 -e ZOOKEEPER_URI=172.17.42.1:2181 trains/routes
$ docker run --name bookings -p 3002:8080 -d \
 -e BASE_URI='http://172.17.42.1:3002' \
 -e ZOOKEEPER_URI=172.17.42.1:2181 trains/bookings

We can now browse our microservice application at http://
localhost:3000 or browse our REST services for the routes
and bookings modules at http://localhost:3001 and http://
localhost:3002, respectively.

Conclusion
In this article, we have seen how to develop microservices
with standard Java EE using the open source KumuluzEE
framework. As demonstrated, the KumuluzEE framework

automates tasks related to the configuration and deploy-
ment of microservices. With simple dependency definitions
in Maven, it allows us to create self-contained, standalone
JAR files, which contain the required execution environment.
Therefore, they can be executed within a standard JRE with-
out requiring an application server. This way, microservices
with KumuluzEE provide a minimal footprint and are a good
fit for executing in cloud, PaaS, and Docker-style environ-
ments, which was demonstrated with this example. We also
saw how to handle service discovery using ZooKeeper.

KumuluzEE is an enabler for a microservices architecture
in Java EE. The major benefit is that it allows us to use stan-
dard Java EE APIs to develop microservices. This way we can
also port existing applications to microservices. Although at
first blush, microservices might look odd to traditional app
server developers, many technologists believe microservices
represent the future of Java in the cloud. Feel free to down-
load KumuluzEE and try it out. </article>

Tilen Faganel is lead software architect at Sunesis. He is the lead
developer of the KumuluzEE framework for Java, which won the
2015 Duke’s Choice Award for best Java innovation.

Matjaz B. Juric, PhD, is a Java Champion and Oracle ACE Director
who has authored or coauthored more than 15 books on Java,
BPM, and SOA and published in several magazines and journals.

Getting Started with KumuluzEE

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/TFaga/kumuluzee-examples/tree/master/java-magazine-trains
http://kumuluz.com
https://github.com/TFaga/KumuluzEE/wiki/Getting-started

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

89

//fix this /

[In order to expand this section and make it more useful, we
asked Simon Roberts, an author of many of the certification
tests, to develop questions and answers for us. Unlike the
contents of previous columns, Simon provides detailed and
in-depth explanations of why a given solution is correct. We
hope you like this new expanded format. If so or if not, drop
me a line. —Ed.]

These questions are intended to be at the same level of
difficulty as the 1Z0-809 Programmer II exam, and they

should serve at least two purposes. First, I hope that for many
readers they might introduce something new, or clarify some
subtle aspect of the Java language. Second, of course, I hope
they’ll give some insight into how exam questions might look,
the kind of difficulty they might present, and how you might
go about answering them.

Question 1. Given this code:
public class Outer {
 private int x = 99;

 private class Inner {
 private int x = 100;

 public void show() {
 System.out.println(x); } // line n1
 public void showO() {
 System.out.println(Outer.this.x); } // line n2
 }

 public void show(Inner i) {

Quiz Yourself
Test questions from the author of the Java certification tests

 System.out.println(i.x); } // line n3
 public void show() {
 System.out.println(x); } // line n4

 public static void main(String [] args) {
 Outer o = new Outer();
 Inner i = o.new Inner(); // line n5
 o.show(); o.show(i);
 i.show(); i.showO();
 }
}

Which two, taken individually, are true? Choose two.
a.	At line n2, the expression Outer.this.x has the value 99.
b.	Outer.this.x at line n2 fails because x in the Outer

class is inaccessible from Inner.
c.	The expression Outer.this.x at line n2 is a syntax error

that should read super.x.
d.	The expression i.x at line n3 has the value 100.
e.	The access to i.x at line n3 fails because x in the Inner

class is inaccessible from Outer.

Question 2. Given this interface:
public interface Clothing {
 int getSize();
 String getColor();
}

What changes must be made to the following class to allow its
use as a generic container of clothing items?
public class Pair { // line n1
 private E left, right; // line n2

SIMON ROBERTS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

90

//fix this /

 public Pair(E left, E right) {
 this.left = left;
 this.right = right;
 }

 public boolean isMatched() {
 return left != null && right != null
 && left.getSize() == right.getSize()
 && left.getColor().equals(right.getColor());
 }
}

a.	Modify the type E to be Object.
b.	Modify line n1 to:

public class Pair<? extends Clothing> {
c.	Modify line n1 to:

public class Pair<E super Clothing> {
d.	Modify line n1 to:

public class Pair<E extends Clothing> {
e.	Modify the variable declarations on line n2 to:

private Clothing left, right;

Question 3. In the following lambda, assume that the generic
arguments are appropriately defined:
s->s.length()

Given that the length() method returns an int, to which two
standard functional interfaces can the lambda expression be
assigned? Choose two.
a.	Function
b.	IntFunction
c.	IntSupplier
d.	ToIntFunction
e.	UnaryOperator

Question 1. The correct answers are Options A and D. This
question revolves around the meaning of private accessibil-
ity. It’s common to hear casual descriptions of the meaning of
private in words along the lines of “private stuff is acces-
sible only from inside the same class.” However, this is inac-
curate in a critical way, and this question hinges on that.

In essence, any private element is visible anywhere inside
the enclosing top-level curly braces that surround it. For
simple situations, the two descriptions might be the same,
but in the case of nested or inner classes, the private ele-
ments of inner and outer classes are all visible from both
classes. Section 6.6.1 of the Java Language Specification notes
that “...declared private,...access is permitted if and only if
it occurs within the body of the top level class…that encloses
the declaration....”

The syntax Outer.this.x is the correct way of provid-
ing an explicit access to the field x in the enclosing instance.
Of course, it’s horrible style to have used the same name, x,
in both inner and outer classes like this. If the variables were
not both named x, they wouldn’t collide, and there would be
no need for this disambiguating syntax. However, this exam
isn’t about testing whether you know the things that every-
body knows; it’s about proving that you’re better than aver-
age, and this syntax sometimes crops up, although more
often in the maintenance of older code that has taken some
abuse over some time. Section 15.8.4 outlines this form.

Given this, Options A and D are correct. Options B and E,
which assert that the private fields are essentially acces-
sible only inside their own defining classes, are incorrect.

The syntax suggested by Option C is also inappropriate.
While super.x is a generally valid form, it would provide
disambiguated access to a variable x in a parent class, not

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.6.1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.8.4

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

91

//fix this /

an enclosing class (section 15.11.2). Given this, Option C is
also incorrect.

Therefore, Options A and D are the only correct answers.

Question 2. The correct answer is Option D. There are two
problems with the Pair class as it stands. The first is that the
generic type variable E is not declared. This would require, at
a minimum, that the class declaration on line n1 be modi-
fied to look like this:

public class Pair<E> {

However, if that is the only change made, the underlying
type of E will be taken as Object; that is, there will be no
restrictions on what types this Pair can be made to contain,
other than that the left and right elements must be the
same type. Because of this, the attempts to call the getSize
and getColor methods in the isMatched method will fail.

For this class to work properly, we need to ensure that
whatever E is in any given use of the class, it’s something
that implements the interface Clothing. That way, the basic
type of the variables left and right will be Clothing, and
the calls to the methods getSize and getColor will compile
successfully.

To make this happen, the syntax of the class declaration
is as shown in option D. (The syntax is formally called out in
section 8.1.2 of the Java Language Specification.)

Section 8.1.2 also makes clear that type bounds of this kind
are declared using extends, not using super. The use of
super in angle brackets relates to lower-bounded wildcards
and is not relevant here. Consequently, option C is incorrect.

Option B also tries to use a syntax that is incorrect in this
context, and is more closely related to that of a bounded
wildcard. Because line n1 must declare the generic type
variable, it must be declared by name E and not by using
the <? ...> format that is used by bounded wildcards.

Consequently, option B is also incorrect.
Option A is incorrect for two reasons. First, it fails to ful-

fill the requirement that the Pair class be generic. However,
more severely perhaps, it still would not permit the class
to compile, because the attempt to invoke the getSize and
getColor methods in the method isMatched would fail.

Option E also fails to compile. Although it would be pos-
sible to create this class in a nongeneric format, making the
variables of type Clothing, this would also require that the
constructor arguments be Clothing to allow the code to
compile. Because that additional change is not mentioned in
option E, the option fails and must be rejected. Further, even
if the supporting changes were also made, the class would not
be generic, as called for in the question.

Question 3. The correct answers are options A and D. Using
lambda expressions, we give the compiler what amounts to
“parts of a class definition” and ask the compiler to fill in the
blanks from the context. Given a lambda without context, it’s
possible to view the lambda in different ways, and the blanks
might be filled in very differently.

In this example, we know that the return type of the
lambda is int, because that’s the type of the length expres-
sion. So whatever we hope to make from this must return an
int or, via autoboxing, an Integer.

Any of the listed functional interfaces could satisfy this
requirement, so to move forward, we must consider what we
know about the argument types of the lambda.

One thing we know is that there is a single argument,
called s. That means that the IntSupplier is not compatible
with this lambda expression, because IntSupplier (like all
Supplier interfaces) takes zero arguments. So, we can rule
out option C.

We also know that the argument type is some kind of object,
not a primitive. We know this because we are able to invoke
this mysterious length() method on the argument s. (Note

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.11.2
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.1.2

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

92

//fix this /

that it’s tempting to assume that this argument is a String,
but we neither know that nor need to know that.) Let’s con-
sider the remaining options in light of this, and assume that
the type of the argument s is defined by some imaginary
interface HasLength.

The argument and return types of a function are defined
independently, so a Function<HasLength, Integer> would
match our lambda successfully, and option A is a correct
answer.

The argument type of an IntFunction is a primitive int;
therefore, option B can be ruled out.

We already eliminated option C, so we’ll ignore it now.
The ToIntFunction takes an argument of a generic type

and returns a primitive int, so ToIntFunction<HasLength>
fits our lambda perfectly, too. It’s worth noting that this is
in a sense the “best fit” because it avoids the autoboxing of
the return value, but the question doesn’t get into such value
judgments. But clearly option D is correct, too.

The argument type and return type for a UnaryOperator
are constrained to be the same. We already know the return
is int, so the only way that UnaryOperator might pos-
sibly match our lambda is as UnaryOperator<Integer>.
That would work only if the Integer object has a
length() method. Of course, it doesn’t, so option E cannot
work either. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s
first Java classes in the UK. He created the Sun Certified Java
Programmer and Sun Certified Java Developer exams. He wrote
several Java certification guides and is currently a freelance edu-
cator who teaches at many large companies in Silicon Valley and
around the world. He remains involved with Oracle’s Java certifica-
tion projects.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE  ///////////////////////////////////   JANUARY/FEBRUARY 2016

93

//contact us /

Comments
We welcome your comments, correc­
tions, opinions on topics we’ve covered,
and any other thoughts you feel impor­
tant to share with us or our readers.
Unless you specifically tell us that your
correspondence is private, we reserve the
right to publish it in our Letters to the
Editor section.

Article Proposals
We welcome article proposals on all
topics regarding Java and other JVM
languages, as well as the JVM itself.
We also are interested in proposals for
articles on Java utilities (either open

source or those bundled with the JDK).
Finally, algorithms, unusual but useful
programming techniques, and most other
topics that hard-core Java programmers
would enjoy are of great interest to us,
too. Please contact us with your ideas at
javamag_us@oracle.com and we’ll give
you our thoughts on the topic and send
you our nifty writer guidelines, which will
give you more information on preparing
an article.

Customer Service
If you’re having trouble with your
subscription, please contact the
folks at java@halldata.com (phone

+1.847.763.9635), who will do whatever
they can to help.

Where?
Comments and article proposals should
be sent to me, Andrew Binstock, at
javamag_us@oracle.com.

While it will have no influence on
our decision whether to publish your
article or letter, cookies and edible treats
will be gratefully accepted by our staff
at Java Magazine, Oracle Corporation,
500 Oracle Parkway, MS OPL 3A,
Redwood Shores, CA 94065, USA.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40halldata.com?subject=
mailto:javamag_us%40oracle.com?subject=

	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93
	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

	
	JavaMag_JF16_cover_pgCV1
	JavaMag_JF16_pg01
	JavaMag_JF16_pg02
	JavaMag_JF16_pg03-04
	JavaJF16_Pg5
	JavaMag_JF16_pg06-07
	JavaMag_JF16_pg08-09
	JavaJF16_Pg10
	JavaMag_JF16_pg11-12
	JavaJF16_Pg13
	JavaMag_JF16_pg14
	JavaMag_JF16_pg15-22
	JavaMag_JF16_pg23-30
	JavaMag_JF16_pg31-40
	JavaMag_JF16_pg41-46
	JavaMag_JF16_pg47-58
	JavaMag_JF16_pg59-64
	JavaMag_JF16_pg65-71
	JavaMag_JF16_pg72-79
	JavaMag_JF16_pg80-88
	JavaMag_JF16_pg89-92
	JavaMag_JF16_pg93

